Journal of the Institution of Locomotive Engineers
Volume 28 (1938)

Steamindex home page  Updated 03-01-2015 Key file The IMechE virtual library is accessible (full papers, all diagrams, photographs, extensive tables, etc).via SAGE.

Journal No. 141

Saunders, H.H. (Paper No. 380)
A description of two experimental passenger locomotives built for the Indian State Railways. 2-27. Disc.: 28-39.
Fourth Ordinary General Meeting, Session 1937-38, held Institution of Mechanical Engineers, London, on Wednesday, 15 Decemher, 1937 at 6 p.m.: Lt.-Col. F.R. Collins, President, occupying the chair.
Made extensive usc of roller bearings: on one engine Timken roller bearing axleboxes were fitted and on the other Skefko roller bearings to the driving crank pin as well as axleboxes.
Discussion A.C. Carr (28-9) included a table of tractive force per ton of locomotive weight which placed the GWR King class at the top (452), followed by the LNER P2 (406); GWR Castle (396); Lord Nelson (392); Princess Royal (385); LNER Pacific (344); GIPR XP Pacific (315) and BNR GSM (370).

Brown, D.C. (Paper No. 381)
Counterbalancing and its effects on the locomotives and the bridges. 52-111. Disc.: 111-28 + folding plate. 11 diagrs., l2 tables. Bibliog.
Twenty-seventh Annual General Meeting and the Sixth Ordinarq General Meeting of the Session 1937-38 held at the Institution of Mechanical Engineers, London, on Wednesday, 23 February 1938, at 6 p.m.:: Lieut.-Colonel F.R. Collins, President of the Institution, occupying the chair.
Brown was involved in the British Standards Committee on hammer blow. A precis, without the discussion was published in Locomotive Mag., 1938, 44, 86-7.
In the past, when only incomplete data were available, the civil engineer had, in many cases, made impact allowances which are now known to have been excessive. On the other hand, investigations have shown that locomotives have sometimes been balanced with little regard to the bridges and track. In recent years, however, the interest which has been aroused in the effect of impact on bridges has resulted not only in an elimination of extreme cases of bad balancing but in a general alleviation of hammer-blow. Partly as a result of the more complete knowledge of impact effect and partly on account of lower hammer-blow, the civil engineer has in many cases been able to allow an increase in the permissible weight of the locomotive. Thus mutual understanding has been of advantage not only to the two departments concerned, but to the railway organisation as a whole.
It is noticeable, however, that although so much has been done to ascertain the effect of hammer-blow on bridges, there has been very little scientific investigation of the disturbing effects which the unbalanced reciprocating masses exert on the locomotives. Hence, although the locomotive engineer is well aware of the maximum balance which can be allowed, he has little data to guide him at the other end of the scale. Such practical test results as are availab!e seem to indicate that in many cases locomotive designers may have been unduly apprehensive of the disturbing effects of the horizontal forces, especially on the heavy locomotives now used.
It will be seen from the above that balancing is largely a matter of compromise and the purpose of this paper is:
(a) To investigate the methods of balancing locomotives having various cylinder arrangements.
(b) To examine the conditions under which a concession in permissible weight on track and bridges might reasonably be expected in return for a reduction in hammer-blow.
(c) To discuss the limits to which the balancing of the reciprocating parts might be reduced without adversely affecting the behaviour of the locomotive.
The early work of Nollau, Le Chatelier and D.K. Clark, and later investigations by Professor Dalby, the principles of locomotive balancing are well known.
Contributors to the discussion included Gribble (111-14); K. Cantlie (114-16); A.C. Carr (116-17); E.H. Greet (117-21) and D.R. Carling (121-2) who said there were three points which he would like to mention.
With regard to the shuttling of engines, there was no doubt that at times that could be extraordinarily unpleasant to passengers, quite apart from any effect which it mignt have on the engine itseli in the way of increased maintenance. It had occurred to him that that might be due to synchronism in the natural period of vibration of the buffer and drawhar springs as loaded with the masses of the engine at one end and the train, or part of it, at the other, and the speed rotation of the engine wheels and, though it did not come directly under the subject of counterbalancing, it was a matter which might be looked into on passenger engines. He had been nearly shaken out of his seat in the first coach of a suburban train travelling fast with a tank engine.
He said there was no mention in the Paper of any other means of balancing reciprocating masses than by weights on the wheels. Some recent two-cylinder French engines were fitted with Cossart valve gear, and the driving mechanism was so arranged that the return cranks were at 180° to the main driving cranks, and the designer had deliberately put heavy weights on the end of what we should normally call the eccentric rod at the end remote from the return crank, so that there is a heavy mass reciprocating in exact anti-phase to the corresponding piston and crosshead and nearly in the same line. He asked if the Author considered that that would be a valuable method of achieving balancing of the reciprocating forces without any corresponding hammer-blow The whole gear was described in The Locomotive for April and May, 1933, the latter article containing the part relative to counterbalancing. He also enquired if the Author could give an opinion as to the practicability of balancing a four-cylinder compound locomotive in accordance with marine practice on the Yarrow-Schlick-Tweedie system, bv which all primary forces and couples could be eliminated, but which required uneven crank spacing
who refered to shuttling and mentioned the Cossart valve gear which had been described in Loco. Rly Carr. Rev., 1933 April/May

Journal No. 142

McClean, H.G. (Paper No. 382)
The hammer-blow with axle-hung electric traction motors. 140-85. Disc.: 185-97.
Third Ordinary General Meeting of the Session 1937-38 held at the Institution of Mechanical Engineers, London, on Wednesday, 24 November 1937, at 6 p.m., Lieut.-Col. F.R. Collins, President occupying the Chair. Precis of paper from Locomotive Mag., 1937, 43, 382-3.
In the drive arrangement of the so-called "axle-hung" type traction motor, the motor is suspended partly by bearings frigidly fixed on the axle and partly from a nose or projection, on the side of the motor frame remote from the axle, through springs on to the truck or vehicle frame. The motor mass is, therefore, only partially spring-borne, some of the mass being rigidly associated with the wheels and axles. With this type of drive and suspension, therefore, blows occur on the track at irregularites such as rail joints or crossings. It has been assumed that this blow effect severely limits the field of application for this drive and alternative types of more complicated and more expensive and less robust drives have been developed for high-speed electric locomotives. With the increasing adoption of high-speed motor coach trains, where the motors had to be accommodated below the coach floor, and also in the application of electric transmission to Diesel vehicles, where the engine occupied the space above the floor level, it was, in general, impossible to adopt the newer and alternative types of flexible drive and there has been a strong tendency to retain the axle-hung motor.
The author, in his paper, proceeded to review the investigations which have been made of the vertical hammer-blow effects on the track by the axle-hung motor arrangement and to indicate the approximate limits to its successful application. It is clear that the lateral blow with this motor is of equal importance and may be the limit to the application of this type of drive.
In considering the vertical blow effect two problems are involved. The first is the determination of the blow which occurs at a track irregularity, such as a rail joint, due to the passage of a single axle load consisting partly of sprung and partly of unsprung mass. This blow will normally be determinable in terms of the mass, wheel diameter and speed. The second problem is to determine what portion of the total mass may be considered as unsprung-borne in respect of the blows on the track.
Several solutions of both problems have been suggested, but no attempt has been made to consider the complete or dual problem. The author reviewed previous investigations in order to determine, where the axle-hung motor drive is adopted, what portion of the total motor mass should be considered as unspringborne in relation to blows on the track. A main formula is then derived expressing the complete hammer-blows in terms of the total unsprung mass per axle, including the equivalent unsprung mass of the motor, the vehicle speed, and the wheel diameter.
A comparison was made of the hammer-blow effects on a number of high-speed vehicles covering alternative methods of propulsion.
Experience in India. Discussion: W.A. Stanier (186) said it was rather news to him that in electric traction hammer-blow occurs, but thought perhaps he had been thinking rather in terms of a steam locomotive, where they had to Iialance the hammer-blow of reciprocating masses rather than the hammer-blow from which the track might suffer due to unsprung weight. He said the Paper was full of very complex formulae, and when they heard that electric trains of high speed with nose-suspended motors were very damaging to the track, he wondered whether these formulae really served any useful purpose.
He had seen designs of electric locomotives, largely on the Continent, where they went in for all sorts of elaborate arrangements of rods, so that the electric drive could be on a spring-borne portion of the chassis. One of the most interesting that he had seen was the type of electric locomotive used in Sweden, where they seemed to have overcome the difficulty of having a complex triangular connecting rod by putting the drive exactly on the axle centre and having the coupling rod extended through the jack-shaft pin, so that they get a straight drive. He did not know whether anyone could tell them whether the Swedish electric railways ran at high speeds of over 70 m.p.h. If they did, he though it would he very interesting to know whether that type of locomotive was so destructive to the track or so uncomfortable to the passengers as the electric vehicles with the drive that the Author has so clearly set out in his Paper.
C.E. Fairburn (188)said he would like to stress the point raised by Mr. Graham with reference to the title of the Paper. The hammer-blow was not caused by the motor as such; it came from the weight of the motor, and said if a lump of lead were hung on the axle instead of the motor, the effect would be just the same. On the other hand if the track were perfectly smooth there could not be any hammer-blow. He thought it should be made clear that it is not the presence of the motor that causes the hammer-blow.
The opinion, he said, had been expressed that 60 m.p.h. was a sufficiently high maximum speed for a motor coach with nose-suspended motors and he would like to make this parallel. He did not know whether anyone present had been on the Flying Hamburger or the Burlington Zephyr. These were very high speed Diesel electric trains with nose-suspended motors and yet they ran very steadily. He asked if there was so much diff'erence between a multiple unit train arid a Diesel electric train merely because the source of energy .happened in one case to be Diesel engines? His own view was that with proper design there was no reason at all why nose-suspended motors should not be fitted to motor coaches running at speeds very much higher than 60 m.p.h.
He said, with regard to the question of spring drivc, if electrification was to be a success the cost of maintenance had to be low and the fewer parts used, the lower that cost was likely to be. Therefore he did not advocate spring drive unless it was absolutely necessary.
.4 short time ago, he said, he saw some curves giving the results of tests on the shock to the track caused by a side-rod locomotive, a double-bogie locomotive with ordinary nose-suspended motors and a double-bogie locomotive with spring drive. The side-rod locomotive had three driving axles with a load of about 17 tons per axle; the locomotive with nose-suspended motors had an axle load of about r2g tons and the locomotive with spring drive had about the same weight per axle as the side-rod locomotive. The results of the comparison were very interesting because there was very little difference, taking into account the respective axle loads, between the effect on the track of the side-rod locomotive and the locomotive with nose-suspended motors, but the curve for the locomotive with spring drive was extraordinary; it went up, then down, and then up again and it was quite obvious that there were periods of resonance which were not doing the track any good at all. This possibility, he said, could not be overlooked when considering spring drives.
The Author had worked hard in collecting formulae and they are very interesting but he did not think they were really of any practical use.
He believed that on the Southern Railway speeds of something like 80 m.p.h. were attained regularly. On the Liverpool-Southport Railway with stock with heavy nose suspended motors over 30 years old, they got up to 60 or 65 m.p.h. and he thought it would be agreed that on this line, the riding was as comfortable at 60 m.p.h. and over, as it was at 40 m.p.h. He thought that any tendency to reduce speed with nose-suspended motors was going in the wrong direction.
H.H. Swift (189) said they seldom obtained particulars of the effect of axle-hung motors on railway track. Generally speaking the track had been brought into good condition before the high speed Diesel electric vehicles had been put into operation. He did not know that figures had ever been published, for example, on the track between Hamburg and Berlin. He thought that question of track should be borne in mind when deciding which type of drive to adopt.
.

Nichols, H.J. (Paper No. 383)
The development of passenger rolling stock. 198-212. Disc.: 212-36.
Tenth Annual General Meeting of the Indian and Eastern Centre  held at Maiden’s Hotel, Delhi, on Friday, the 11f February 1938, at 6.30 p.m., the chair being taken by Mr. J. Humphries, Chairman of the Centre. Repeated at. General Meeting of the Southern Branch of the Indian and Eastern Centre held at the Anglo-Indian Institute, Perambur, Madras, at 6.30 p.m. on Saturday, 16 October 1937, when was read by Mr. E. L. Roberts, Chairman of the Branch, on behalf of the Author, owing to his unavoidable absence.
Indian practice.

Journal No. 143

Case, C. (Paper No. 384)
Handling and consumption of coal. 249-92. Disc.: 293-312.
Third Quarterly Meeting of the year 1937 of the: South American Centre held at Perez on 15 October: chair taken Mr. F. Campbell, Chairman of the Centre.
In Argentina

Appleyard, C.E. (Paper No. 385)
Locomotive drawing office practice. 313-51. Disc.: 351-6.
First Ordinary General Meeting of the Centre held on Thursday, 14 October 1937, at 7.15 p.m., the chair being taken by Mr. G.W. McArd (Chairman, Session 1937-38).

Boyle, W. (Paper No. 386)
General considerations of bearing metals. 357-62.
Fourth Ordinary General Meeting of the Scottish Centre held at the Royal Technical College on Thursday, 20 January 1938, at 7.30 p.m., the Chair being taken by Mr. H. Fowler.
Noted that it was almost a century now since Isaac Babbit first invented the lined bearing as is now known in the form of a liner of some strong or rigid material (it is not known whether it was iron or bronze he used) lined with a soft, white metal.

Hewitson, J.W. (Paper No. 387)
A summary of the development of valve gears. 365-70. Disc.: 370-2.
Fourth Ordinary General Meeting of the Scottish Centre held at the Royal Technical College on Thursday, 20 January 1938, at 7.30 p.m., the Chair being taken by Mr. H. Fowler: paper read by Mr. J. Sinclair, who deputised, in the unavoidable absence of Mr. Hewitson.
Steam was being used expansively in a locomotive cylinder on the Lancashire Witch by Robertson Stephenson in 1828 and it traces back to the Rocket, designed by George Stephenson. Notes the popularity of Walschaerts valve gear and gave poppet valves a cool reception.

Journal No. 144

Loubser, M.M. and Cox, E.S. (Paper No. 388)
Locomotive boiler design: theory and practice. 377-409. Disc.: 409-41. + 7 folding plates. illus., 11 diagrs., 6 tables.
Note this is very much a paper by Loubser which Cox presented in London in the absence of the Author: Cox did not meet Loubser until 1961 and thenb in South Africa. Fourth Ordinary General Meeting of the Session 1937-38, was held at the Institution of Mechanical Engineers, London, on Wednesday, 26 January, 1938, at 6 p.m., Lt.-Col. F. R. Collins, President of the Institution, occupying the chair.
This Paper was unusual in that it was the work of two authors who. had not been able ta work in collaboration. The basis was a treatise on the theory of the locomotive which had been prepared by M.M. Loubser, Assistant CME on the South African Railways. This was delivered to the Institution in a condensed form covering the whole locomotive. The second author was requested to deal only with that part covering boiler and smokebox and to expand this into a self-contained Paper. At the same time, it was desired to amplify the original content to cover British practice with some reference to the considerations which influence British boiler design. To achieve this it has been necessary in places to depart from Loubser’s text and to add sections not contained in the original communication, while to make the Paper more readable, the actual working out of mathematical formulae is incorporated in the appendices. Due to the short time available and the distance separating thr authors, no form of collaboration has been possible, and the second author hopes that in spite of his editing and amplification he has been able to convey to the Institution the spirit and substance of Mr. Loubser’s original communication.
The names best known in connection with this "puzzle of locomotive designers" [blast pipe and chimney dimensions] are Zeuner, Goss and Strahl. Zeuner laid the foundation to the theory regarding the locomotive chimney in his book on the subject published in Zurich in 1863 and in subsequent articles. Goss in his classical experiments with the "Schenectady" put new life into the question and Strahl, guided by the results of both, has, by his experiments of 1905 and 1908, followed up by careful theoretical investigations of the results, thrown fresh light on the question at least as far as non-articulated locomotives are concerned. The theory followed here is that of Zeuner and Strahl.
Page 395: When this cannot be realised constructionally and with the modern big boilers, it is generally difficult or impossible to get the cap low enough with a chimney and a blast pipe cap of ample dimensions to give a free exhaust, a very useful remedy is to use “ knives ” or “ Goodfellow tips,” i.e., triangular shaped pieces of metal projecting over the edge of the cap into the blast: Four about *in. to $1. broad projecting iin. to Iiin. tend to spread the blast in a virtual cone of 1 in 4 or 1 in 4.5 so that the divisor of 6 in the above expression can be replaced by 4.5.
Referring to some British examples, Table IV shows that if a divisor of 5 instead of 6 be taken then the results conform, but if the figure 6 of Strahl’s experiments be adhered to then the blast pipe will require lowering in the engines concerned.
TABLE IV.
The object of the Paper is to summarise in simple terms the fundamental considerations covering boiler design and to illustrate their application with reference to some modern designs. The boiler is dependent for its draught on the vacuum created and maintained in the smokebox by the exhaust steam, and insignificant as this fact might appear at first sight, yet the whole performance of the boiler is governed by the overall effectiveness of this process. The theory of the boiler, more especially the combustion and transfer
Cox's contribution consists of an analysis of the Stanier taper-boiler with particular emphasis on the four types fitted to the Jubilee class.
Stanier (pp.410-11) adds some notes on the front-end. "I should like to take this opportunity of saying how well I think Mr. Cox has reviewed Mr. Loubser’s Paper. I had an opportunity of looking through Mr. Loubser’s Paper, and the two sections which Mr. Cox has taken cover very well the essential matter of that Paper, and the linking of it up with English practice is, 1 think, most helpful to members of the Institution. In that connection, there is one thing which has always puzzled me. Reference is made in th.is Paper to the relationship of the diameter of the blast pipe given by the formula on page 396 and the actual diameter of blast pipe used on the engine. There is a striking difference between them, and what has always puzzled me is that a 3-cylinder engine always seems to require a smaller blast-pipe top than one would expect to put on an engine of that power. One of the possible solutinns, of course, is that with a 3-cylinder engine there is not the same volume of steam coming through the blast pipe per pulsation, and it may be that the formula for a 0-cylinder engine should take that into consideration. It is a fact that so far as the locomotives of the L.M.S. Railway are concerned, the 3-cylinder engines generally require a smaller blast pipe than would be expected for their power. The 2-cylinder and the 4-cylinder engines, it will be noticed from Table IV, come very much closer to the diameter given by the formula which Mr. Loubser puts forward.
In discussing the problcm of design of the boiler, it is interesting to find that Mr. Loubser does not dwell entirely on the importance of the smokebox arrangenicnt and the vacuum in the smokebox ; he does link it up with the grate area and the How of gases through the boiler, and indicates quite clearly that the whole of the factors in the design of the boiler have to be in balance if a satisfactorily steaming boiler is to be obtained.
I suppose that one of thc advantages of a steam locomotive over any other power unit is the fact that it can work at such a wide range. The particular engines which Mr. Cox has described, the 3-cylinder 4-6-0 engines, on tests, working trains under the control of a dynamometer, have burned from 301b. per sq. ft of grate per hour up to nearly 100lb. per sq. ft. of grate per hour perfectly satisfactorily. The only factor seems to be the ability of the fireman to put the coal on. The wide range over which steam locomotive5 can be used is one of the advantages of using that type of power. The engine developed something like 1,800 h.p. when burning nearly 100lbs. per sq. ft. grate area per hour, so that it can be seen that the boiler h.p. is even more important than the engine h.p. if the engine is to do the work..

Dumas, L. (Paper No. 389)
The development of rail motor car services in France. 443-58. Disc.: 458-70.
Seventh Ordinary General Meeting of the Session, 1937-38 held at the Institution of Mechanical Engineers, London, on Wednesday, 30 March, 1938, at 6 p.m., Lt.-Col. F.R. Collins, President of the Institution, occupying the chair.
During the past six years, the French Railways had ordered 800 railcars. Of these, 660 had already been put into service, and 140 were still under construction. The 660 railcars in operation covered 90,000 miles every day or 23.5% of the total daily mileage of passenger steam trains in France.
Dicussion: Stanier (458-9) refered to the three four-wheeled railbuses and to the then new three car set that conformed more or less to the power-to-weight ratio of the French steel-tyred railcars. Nevertheless, Stanier ended his contribution with "?He considered there was no difficulty about building light railcars if the service was required, but in England it had to be remembered that the natural fuel, of which there were large supplies, was coal, and the collieries were very large clients of the railways. He suggested that it would he almost a tragedy if they were to introduce the Diesel railcar to any great extent, although he felt that, as had been the experience in France, there must be certain services where it would be worth while introducing a vehicle of that type".
Brian Reed (465) said he wished to draw attention, still further, to the exceedingly workmanlike way in which the French railway engineers had tackled the problem. Mr. Clayton had put his finger on the trouble in this Country, namely, that there was not enough co-operation, and also, as Mr. Stanier had said, we have philandered with the problem. It is very disheartening to many of us that we have philandered with it when every other country in the world, including many with coal resources almost as large as our own, has hundreds of railcars at the present time. He said there was one point with regard to the French services on which he would like the Author to enlarge, and that was the excellent system which they had for maintenance and repairs. He had had the privilege of going through quite a number of their shops, and said they were laid out extremely well. The problem as a whole had been tackled in such a way as to secure the best results. The propeller car to which several speakers had referred., was, he thought, the first practical attempt at the wind brake. It had been suggested in America that a wind brake might be tried by having movable vanes above the top of the car. In the majority of countries the railcar was well below the loading gauge, and the proposal is that certain of the movable vanes might be raised when retardation was required so as to increase the area presented to the air resistance. Possibly the Author would like to enlarge on that point

Keene, D.H.  (Paper No. 390)
Machine tool equipment of locomotive wheel shop. 470-92. Disc. 492-501. 7 nillus., 3 diagrs.
Sixth Ordinary General Meeting of the Birmingham Centre held at the Midland Hotel on Wednesday, 16 March 1938, at 7.0 p.m., the chair being taken by Captain G.S. Bellamy.
Wheel lathes, recvonditioning of journals and tyre boring.

Journal No. 145

Wechmann (Paper No. 391)
Electrification of long-distance lines of the German State Rlys. 508-20. Disc.: 508-35. 7 diagrs.
Eighth Ordinary General Meeting of the Session 1937-38 held at the Institution of Mechanical Engineers, London, on Wednesday, 27 April, 1938, at 6 p.m., Lt.-Col. F.R. Collins, President of the Institution, occupying the chair.
W.A. Stanier (522) said he found one paragraph in it which was very comforting, namely, where the Author said " With all the advantages of electric traction, it cannot be said that the steam locomotive, in some form, will ever be replaced, at least in countries having rich coalfields." On the other hand, he thought the fact that as the Institution was an Institution of Locomotive Engineers and not of steam locomotive engineers was all to the good, because one could not help feeling that the developments which were taking place and the fact that electrical engineers were at last getting down to a common multiple, so to speak, for the way in which the power could be used, meant that that Institution had to consider electric traction as well as steam traction. The Paper which they had just heard, showing what had been done in Germany in that regard, was a very interesting and a very useful contribution to the Proceedings of the Institution.

Pargiter, G.M. (Paper No. 392)
Economics of locomotive running-shed organisation and administration. 535-62. Disc.: 563-8.
Fifth Ordinary General Meeting of the Newcastle Centre was held at the Royal Station Hotel, on Tuesday, 8 February 1938, at 7.0 p.ni., the chair being taken by Mr. McArd.
Sequel Paper No. 397.

Summer Meeting in Scotland, 8th to 12th June, 1938. 569-95.
It is significant that the party included 17 German engineers including Dr. Dorpmuller (Minister of Communications), Herr Bergmann, and Dr. Wagner
Cox, E.S.
Run to Glasgow, June 8th. 574-81. + folding plate. diagr., table.
Behind No. 6225 Duchess of Gloucester: includes illus. and side elevation of locomotive and reproduction of dynamometer record

Meeting at Midland Junction, Western Australia, 27th May, 1938. 596-605. 5 diagrs.
Meeting of the members on the Western Australian Government Railways at Midland Junction held on Friday 27 May 1938. The chair being taken by Mr. F. Mills. ‘The Chairman announced that no Paper was being read, but introduced Mr. W. Raynes who opened a discussion on Locomotive Crossheads.
Mr. W. Raynes : Crossheads, in his experience, were probably more troublesome than any other important detail of the engine. In some cases breakage of piston rods at the crosshead cotterway had been cured by shrinking a band on the barrel of the crosshead. Cast steel crossheads on our largest 4-6-2 engincs had broken in several ways, some having cracked through the gudgeon pin holes while others had failed at the junction of barrel and sides. Various other troubles had been experienced and the following notes had been compiled in an effort to place before members various features of crossheads now in use on this railway system.

Journal No. 146

Cook, Maurice (Paper No. 393)
Copper and copper alloys for locomotive firebox construction. 609-42. Disc.: 642-7. 25 diagrs., 7 tables
Fifth Ordinary General Meeting of the Birmingham Centre held at the Queen’s Hotel, Birmingham, on Wednesday, 16 February 1938, at 7.0 p.m., the chair being taken by G.T. Owen
Metallurgical paper which pointed towards higher quality copper with lower oxygen and arsenic contents.

Baldwin, T. (Paper No. 394)
The fatigue strength of machined tyre steels (including some general notes on fatigue and related matters). 649-84. Disc.: 684-722.
Second Ordinary General Meeting of the Session 1938-39 was held at the Institution of Mechanical Engineers, London, on Wednesday, 26 October, 1938, at 6 p.m.: Lt.-Col. F. R. Collins, Past President, occupying the chair.
A high proportion of the breakages of locomotive parts in service are due to fatigue. On examination such fractures are seen to have occurred at "fatigue flaws” which slowly grow into the sound metal until the latter suddenly breaks in a very brittle manner. These service fractures, with a complete absence of plastic distortion, are very different from the fractures obtained in a tensile testing machine. The latter type shows no signs of a smooth growing flaw and the test piece is seen to have altered its shape considerably during the test. The fracture of tyres in service is a matter which is naturally regarded seriously by locomotive engineers: cited work by C.W. Ridges (Paper No. 261 in 1930) and E.S. Cox (Paper No. 346 in 1935). The author worked for the LMS at Derby.

Hart, W. (Paper No. 395)
Welding and cutting in a railway workshop for repairs and fabricated structures. 722-43. Disc.: 744-50. 19 illus. (including microscopic images), diagr.
First Ordinary General Meeting of Manchester Centre held at the Manchester Literary & Philosophical Society on Wednesday, 26 October 1938, at 7.0 p.m.: the chair being taken by F.W. Abraham.
Five sections with the following headings
Methods of repair in a locomotive repair shop.
Cast iron welding
Design for fabrication by welding.
Cutting for fabrication.

Welding
Concludes with LMS welded tender.

Informal Meeting, 13th October, 1938. 752.
Informal Meeting held on Thursday, 13 October 1938, at the Institution of Mechanical Engineers, London at 6 p.ni., Mr. J.N. Maskelyne, read a Paper on “The Design and Construction of Modern Miniature Steam Locomotives for Passenger-carrying purposes. ”
There was a very good attendance of members, who heard with considerable interest of the difficulties encountered and the ingenious methods adopted by the designers and builders to overcome them.
The Paper is not being published, but a copy is filed for reference. This can be inspected during the usual office hours at 28, Victoria Street, London, S.W.I