Journal Institution Locomotive Engineers
Volume 23 (1933)

Steamindex home page
 Updated 8 July 2011 Key file IMechE virtual library is accessible (full papers, all diagrams, photographs, extensive tables, etc).at www.imeche.org.uk.

Journal No. 111

Jarvis, C.C. (Paper 297)
Dynamometer car working on the L.N.E.R. 2-33. Disc. 34-46. 4 illus., 12 diagrs.
Former NER car.
Locomotive performance could be subdivided:

Description of mechanism

Car could measure:

Figure 4 (page 11): Maximum drawbar pull tests:
Super Sentinel No. 44
3-cylinder mineral locomotive class O2

Figure 5 (page12): Drawbar pull recorded near Warkworth:
C6 No. 701 (2-cylinder)
C11 No. 878 (2-cylinder)
C7 No. 729 (3-cylinder)

A1 2555: effect of taking water on Werrington troughs entered at 73 mile/h and exited at 68 mile/h

Electric clock with standby mechanical clock; dynamic integrator; human intervention to record changes of gradient, mileposts, tunnels, speed restrictions, etc; also boiler pressure, steam chest pressure, cut-off, steam temperature, injector working, damper postion. 160 ft long record for Newcastle to York. Braking date automatically monitored. Water measurement - connection to tender tank. Coal (bagged).

Steam heating measured: 800 lb steam per hour to heat 12-14 LNER coaches.

Boiler performance:
feed water temperature: ordinary thermometer
steam temperature: pyrometer
smokebox temperature: pyrometer
smokebox vacuum: water gauge
Cambridge high frequency draught recorder
CO2 recorder: Cambridge instrument
Dr G.A. Shakespear of Birmingham University has developed micro-indicators

Car attendant's fascilities: could prepare simple meals, act as guard in North Eastern Area; sleeping accommodation.

Figure 15 Dynamometer record: Pacific 2580: Edinburgh to Carlisle in 1928 with 400 tons.

Notes further records made by car in Journals, Nos 78, 84 and 97.

Also reports work with electric locomotive No. 15 hauling passenger stock weighing 582 tons from Newport when 1500 hp was measured at the drawbar in 1922.

Discussion: G.W. Phillips (34-5) commented on work permormed by C11 Atlantic which he considered to be superior to that of 3-cylinder C7. In reply the author considered the C11 to be "very good engines" but criticised the driving technique employed. B.C. Bean (35) commented on the newer hydraulic mechanism noted by H.G. Gillvray in Journal 103. C.H. Robinson (37) noted that the spring was removed every twelve months, placed in oil and rebuilt; included notes of tests on D49 class of piston valves versus Lentz oscillating cam and rotary cam valves (the last having fixed cut-offs); Tyler (38) made observations on the amount of steam heating consumed in steam heating and the enrgy consumed in picking up water from troughs; the original spring plates were still being used; the steam heating pipes needed to be lagged under the tender to avoid condensation; Wylie (39) noted that the ACFI feed water heater could bring fuel savings of 8-10%, but was very complicated; C. Schlegel (42) queried the procedures for (i) stopping and (ii) coasting at high speed: in reply the author stated that 50% cut-off better than full gear for (i) and in (ii) a little steam but well notched up - full gear with steam off leads to ash and hot gaese being drawn into steam chest and cylinders; J.M. Roothwaite (Rounthwaite?) noted that Walter M. Smith had observed that 30% of power is absorbed in propelling the locomotive itself and the speaker wondered what effect roller bearings and streamlining might have. Lund (43) speed was calculated electrically off the measuring wheel. G.M. Wells (43) noted that the drawbar had broken due to the engine brake being released before the train came to rest.

Lee, A.J. (Paper 298)
Present-day designs of locomotives and rolling stock. 47-65. Disc.: 65-83.
A survey of requirements for use under Argentinian conditions where the population was sparse. Lee advocated steel fireboxes, thermic syphons, mechanical stokers and possibly welding.Questions why feed-water heating had not been adopted. Need for standardization of boiler fittings. Smokeboxes and ash pans required heat resistant steels. Cites the results of the Bridge Stress Committee. Notes problems of wheel balancing and tyre wear, especially on two-cylinder designs where flange wear was excessive and there was unequal flange wear. The care of axleboxes and bearings was important. There was a need for flange lubricators. Minimum tyre thickness should be two inches. Roller bearings were under test. Mentioned poppet valves and piston rings. Suggested guaranteed fuel consumption figures, like cars. Of the Garratt type: "has solved in a very effective manner the problems of how to haul more tons per engine without increasing axleload or carrying out aletrations to the existing permanent way and bridges...". Refereed to Chapelon rebuilt PO Pacific noting the thermic syphons, large steam passages, high degree superheating, high boiler pressure, poppet valves, Kylchap exhaust, increased ashpan openings and feed water heaters. Three articulated Sentinel railcars were on test: one had run 130,000 km; the low running costs were noted. Steel bodies were required for coaching stock: noted advantages of rubber flooring but considered linoleum to be adequate for the Argentine. Did not favour articulation, but favoured roller bearings. Wagons were limited to low mileages and suffered from uneven flange wear, one-way traffics, dust and the carriage of cattle.
Discussion: E.C. Noble (65-6) noted the need for ease of maintenance and design to reduce maintenance. Need for standardization and ruggedness. F. Davis (66-8) noted the use of Caprotti valve gear on the Central Argentine Railway. The three-cylinder Pacifics had 225 psi boiler pressure, a tractive effort of 29,859 (at 66.6%) and were able to haul 650 ton trains between Buenos Aires and Córdoba. Subsequently found that Caprotti led to high shed maintenance due to damage, but had achieved 8000-11,000 km/month and achieved high haulage. A major problem was the sticking of the valve spindles in the guides. W. Heaton (68-70) noted the loss of paint finish on the steel-bodied rolling stock due to the high solar input. Alpax aluminium alloy was used on the Central Argentine Railway to reuce weight but there were possible fatigue problems. Advocated Decolite flooring. Articulation and roller bearings were more suited to electric suburban stock. P.L. Falconer (70-3) advocted steel fireboxes and tubes citing Deakin (the 1922 President). On the Central Argentine Railway 62% of locomotives were fitted with steel fireboxes and the seams were partially welded. This had reduced boiler repair costs by 24%. There were 178 boiler failures in 1924, but only 55 in 1932. Improvements included blow-down, top-feed, anti-priming boiler compound, hot water washing out, water treatment, elimination of unsuitable watering points using larger tenders, good wheel balancing, tyre wear was associated with slipping. F. Cleaver (73) made observations on the turning of tyres. T. Clayton (73-4) noted the lasting quality of timber bodies and advocated creosote treatment. He criticised the low quality of Argentinian passenger rolling stock, damage received to vehicles during shunting and advocated corrugated iron roofs for steel wagons. E.J. Beckwith (74-6) commented on internal combustion railcars on the Buenos Aires and Pacific Railway, including a two-axle unit with a Junis Leyland petrol engine. 42 wagons were in service with cast steel bogies. C. Case (76) advocated large tenders to reduce watering points (an to improve water quality at these) and called for the mechanical loading of coal. J. Campbell (76-7) made a plea for standardization as ahd taken place in India, a further plea for a locomotive testing station. J.G. Mayne (written 79-82) noted the Henschel condensing locomotive on the Argentine State Railways, was less eager for standardization, noted the importance of wheel balancing and the importance of good maintenance facilities for the Garratt type.

Williams, W.C. (Paper No. 299)
Modern articulated steam locomotives. 85-132. Disc. 132-57. 51 illus., 7 diagrs., 4 tables.
Global review mainly of Beyer-Garratt type. Pp 139-40 Cites the review of the articulated locomotive by Kitson Clark (Paper 87). Mentions the Klein-Lindner axle and the Krauss-Helmholtz forms of semi-articulation. The Semmering contest of 1851 was highly significant although some of the designs submitted were "weird and wonderful": the Weiner-Neustadt was in effect the prototype for the Meyer and Seraing for the Fairlie. Both were improved. The Kitson-Meyer was employed mainly on the Pacific Coast of South America. The Livesey-Meyer (Fig. 2) was developed by Sir Harry Livesey for the Bolivia Railway.. The Fairlie type was modified by Johnstone in 1888 by fitting two separate boilers. The Mexican Railway employed the 0-6-0 Fairtlie type on 1 in 25 gradients. In 1880 Lima Locomotive Works introduced the Shay type which gave extraordinary flexibility. The Mallet patent dates from the early 1880s and was combined with compounding. The American Mallet was described as being long and unwieldy, but 2000 were in service then. A 2-8-8-0 compound Mallet was built for the Java State Railways and was described by P. de Gruyter at the World Engineering Congress in Tokyo in 1929. The Mallet has no capacity for speed but the Atchison, Topeka & Santa Fe Railroad had Mallets with 6ft 1 in driving wheels. In 1909 a 4-4--6-2 built by Baldwin had a Jacobs-Shupert sectional firebox. Another Baldwin, a 2-6-6-2 for the Baltimore & Ohio Railraod had 5ft 10in driving wheels and could achieve 60 mile/h.
The first Garratt patent dated to 1907. Refers to early Garratt paper presented by Woodgate Dearberg in 1917. The boiler was a great steam-raiser. The paper includes a table of the locomotives manufactured; many of which are illustrated. The 4-8-2+2-8-4 type supplied to the Antofagasta (Chile) and Bolivia Railway had bar frames and were oil-fired and worked on 3.25% gradients. On the Guayaquil and Quito Railway the low-axle-load locomotives had to be able to cope with 1 in 18 gradients. They could be capable of high speeds as with the locomotives supplied to the Tasmanian Government Railways in 1912. and the 4-6-2+2-6-4 type supplied to the Sao Paulo Railway. The Société Franco Belge had constructed express Garratts with coupled wheels of nearly 6ft in diameter for the PLM in Algeria. On test between Laroche and Dijon they had hauled 625 tons at an average speed of 51.3 miles/h. Eleven miles were run at 67 miles/h.
Newer non-Garrattt articulated locomotives included Modified Fairlies built by NBL for the South African Railways in 1925/6; the Golwé Société Haine St Pierre in Belgium for the metre gauge lines in the Côte d' Ivoire. Maschineban AG of Hanover had combined the Mallet and Garratt concepts and the Franco Syndicat Belge des Locomotives of Tubize had produced an articulated locomotive with eight cylinders and dual fireboxes and barrels.
W.A. Lelean (132-3) noted the significance of "a Garratt engine having the running characteristics of the wheel arrangement of the motor bogies". The location of the pivots enables smooth running and there were no problems with the flexible joints. J. Clayton (133-4) opined that it was "something which should make all British engineers, and members of the Institution in particular, proud of the name of one of its members, the late Mr H.W. Garratt, and also of Beyer Peacock". He then questioned the performance of the flexible joints and the reason for the ecellent boiler and was informed that this was due to the large great area and large firebox heating surface, the good steam space, wide water legs, shorter tube length combined with a larger number of tubes. The gas area was increased by 35 to 50% and the gas velocity was reduced which led to less lifting of the fire. Flexible joints were not a  problem. A.C. Carr (134-6), CME of the Bengal Nagpur Railway noted that the use of Garratts got rid of double heading, banking, a certain amount of shunting and increased capacity on single lines. F.R. Collins (136) liked the simple boiler. F.R. Collins (136) liked the simple boilers. H. Greenley (136-7) commented on a logging client in British Columbia which had experienced failures with the Climax and Shay types and recorded the design for the Eskdale Railway which used Luttemôld gearbox trucks with fourteen driving wheels. W.A.J. Day (137-9) mentioned his experience with the NBL Mallets in South Africa which were "doing good work today, and always have done". Mallets without superheating experience excessive condensation in the low pressure cylinders. He noted that the Garratt problems with ball and expansion joints appeared to have been overcome and that the Garratts gave excellent ride. Repeated author's reasons for the excellence of the boiler and also noted the regular shape of the boiler plates (mainly straight). The newer South African Garratts had bar frames which were stronger. Notes that the two units tended to synchronise. Criticism of ashpan design. H. Chambers (139-40) gave details of the design of the revolving coal bunkers for the LMS Garratts. The earlier bunkers had led to dust enterinng the cab when running bunker-first. Appreciated the comfortable ride and there were few problems with joints. Care was needed when re-railing. M.D. Lowndes (140) recorded Argentinian experience: they were "not looked upon as a novelty... but is [are] classed in the same way as the rest of the motive power". C.E. Williams (141-2) noted the problem of insufficient traffic in East Africa. Commented that the CME of the Tanganyika metre gauge railways recorded the steady running, the soft blast, the ease with which the sharpest curves can be taken, the esae of firing: native firemen could maintain full steam pressure and an adequate water level in the boiler.He noted that the Maurtius Railway was anxious to dispose of its three Beyer Garratts as there was insufficient work for them.
Doncaster Meeting
J.S. Elliott (148-50) described the performance of the LMS locomotives in service. They were unsuited to variable traffic and repairs may only be needed to part of the locomotive. On the other he praised the large dimension boiler, its good steaming and deep firebox, its high tractive effort, its low axleload, the flexibility of the units and their ease on the track, but wanted a sharper blast and mechanical stokers. There were problems with tube cleaning, the location of the sand boxes and wear of the crosshead slippers and a wheel drop is essential. There was a good reduction in flange wear.Wagon design and siding limitations restricted  their use in Britain. In reply the author noted that on the Toton to Cricklewood run there is only one boiler and that higher speeds could be attained. E. Slaughter (151) described the performance of the LNER U1 on the Worsborough Incline, but noted thatthe engine was hardly warmed up by the time it had to come to a stand. T.A. Street (151-2) pondered on the "fluctuations in drawbar pull" due to "synchronisation" between the units. H. Beastall (152) mentioned the problems with steaming on the U1 at Mexborough and this had led to modifications being made to the blastpipe orifice. I. Andrews (152) asked whether the water tanks were coupled: author replied that there were valves on the footplate to enable crew to switch tanks. J. Bundell (152-3) noted the good flange wear; the reason for the very high superheat for the Garratt supplied to tthe USSR (Russia) was the very low ambient temperatures..

Journal No. 112

McDermid, W.F. (Paper No. 300)
The locomotive blast-pipe and chimney. Part 2. 162-204. Disc. 204-24
Considers exhaust steam behaviour and the influence of valve gear. Page 168 diagram illustrates valve displecment with Stephenson link motion. Surveys blast arrangements: the Adams vortex of 1885 (Figure 14 page 175); Macallan's variable blast-pipe (Fig. 15 page 176): in the discussion on page 206-7 A.M. Bell noted that he had produced the drawings for the Macallan blast-pipe: a problem with the device was that carbon deposits prevented the cap from reseating properly and that the device was mechanically unsound: McDermid noted that he had visited the inventor, but that the device was always troublesome; the GWR jumper blast-pipe; the European variable blast orifice (Fig. 17 p. 179); the Kylala blast-pipe (Fig. 18 page 180 which shows the multiple petticoats in a single chimney)); the Belgian twin blast-pipe where he cited Sanford's observations on this device in discussion of a paper by Poole Vol. 22) as well as Webb's double chimney which had different aims. Notes similarity of Belgian and Kylala types.; blast-pipes with fixed cones. Good drawings of most of these types.
Discussion:
W.A. Lelean (204); Major Williams (204-5); J.R. Bazin (205-6): Notes on device fitted to GNR 0-8-0s: the blast-pipe was of aof special construction and had what was really a conical plunger fitted centrally into the orifice which could be moved up and down by a vertical rod. It worked off a spindle and bell-crank at the base of the blast-pipe and was onnected to the reversing lever so that when the engine was in full gear the conical plunger was dropped, increasing the area of the blast pipe orifice and as the engine was noteched up it was raised and formed a sort of central choke. It worked very well in controlling the exhaust jet but the heat in the smokebox damaged the linkage (On page 213 it is mentioned by McDermid that this device had been invented by Whitelegg. H. Chambers (page 206) mentioned his favoured position for the blast pipe: namely 4 to five inches below the centre line of the boiler and favoured a slight taper for the chimney with 1 to 3 ratio for the blast-pipe orifice to the chimney: these were presumably the dimensions adopted for the Royal Scot class (Fig. 20: 1?). J. Clayton (209-10) queriedd the use of an oil jet as a model for steam as oil had a far greater mass and cited Goss (but not precisely). His experience on the SR suggested that the blast-pipe orifice should be lowered in relation to the chimney and that a large diameter chimney should be used. In terms of exhaust chambers he cited tramway engines built for Java where the device was used to reduce noise and sparks. He also mentions the effect of three-cylinders on draughting). H. Holcroft (210-12) noted damper dimensions and returning to Bazin's comments noted that three-cylinder locomotives should steam better than those with two cylinders (these comments are particularly interesting in view of what was about to happen on the LMS). Three-cylinder engines gave a more continuous exhaust, reduced back-pressure and lowered fuel consumption. The kick in the exhaust at long cut-offs was absent Exhaust receivers had been fitted to the Armstrong singles; Churchward had experimented with a sem-chamber, but the value disappeared once a certain speed was reaxched. He also made observations on the accurate alignment of chimneys.
J.G.H. Warren (pp. 219-24) contributed an appendix which examined the early development of the blast pipe, especially that fitted to the Rocket at the time of the Rainhill trials..

Byrne, B.R. (Paper No. 301)
Note on the possibilities of the electric furnace in the foundry. 227-62. Disc.: 262-9.
The Heroult furnace; Girod furnace; Rennerfelt indirect arc system; Ajax-Wyatt induction furnaces; metalurgy of cast iron; operating costs; economics of power supply. W.A. Lelean (262) asked how the non-magnetic shields inserted to prevent the exterior of the furnace getting hot. A.G. Robiette (262-4) noted that Ford at Dagenham had installed two electric arc furnaces. J.E.O. Little (264-5) noted that electric smelting of scrap cast iron could be very economic. C.E. Williams (265) commented on the excellent cylinders cast at Darlington as an experiment from an electric furnace: the quality was superb, but the cost was unsustainable. E. Kitson Clark (267)..

Blundell, J.
Some notes on fractures. 270-85. 45 figs.
Encountered in a running shed on the LNER over 18 months: steel boiler tubes; copper stays; firebox door plate flanges; fused lead plugs; cast iron elbow of main steam pipe; superheater elements; main frames; springs (plate and coil); hangers, brake rigging; drawbars; valve motion; slide valves; small end straps; piston rods; cast steel crossheads; large end brasses; axleboxes; snifting valve. Effect of material and of shape.

Lelean, W.A.
Unusual fracture of axleboxes. 311-14. 2 figs.
Flow of the whitemetal into the crown of brass box when it ran hot.

Journal No. 113

Atkinson, T.G. (Paper No. 302)
Feed-water heating on locomotives. 325-73. Disc: 373-402.
Fig. 3 shows a composite diagram of the Gaille, Potone, Knorr or Weir types of circuit feed circuits. Mentions the early experiments by Trevithick on the Egyptian State Railway. The Knorr system was used on the German State Railway. Also mentions the Elesco, Coffin and Worthington systems. Cites J.C. Metcalfe's paper on the exhaust steam injector (1927, 17 Paper 215).Notes that at the International Railway Congress at Madrid in 1930 a 6% saving. Other systems included the Dabeg pump and heater which operatd on the Willans Luard system. Figure 24 shows the ACFI system used on some LNER locomotives. On page 402 in response to Dobbie it was noted that a Weir feedwater heater had been fitted to CR No. 136 and was tested between Carlisle and Glasgow, but the results were inconclusive. .

Squire, C.E. (Paper No. 303)
Some points in the design and application of carriage and wagon springs. 403-21. Disc.: 421-9. 14 figs.
Comparison of English and American bogie designs. The former could have helical bolsters and auxiliary bearing springs (Fig. 1), or elliptical bolsters and rubber auxiliary bearings (Fig. 2). Volute springs were used in the Sheffield Twinberrow bogies and the Gibbons bogie used the laminated side springs as part of the bogie structure. Instruments to monitor ride ranged from the glass of water, the Hallade recorder and the Crocker instrument. The Wimperis accelerometer and the accelerometer manufactured by the Cambridge Scientific Instrument Company. The latter is considered in comparison with the Hallade and Crocker instruments. The Tapley instrument, designed for brake tests is also noted. Rubber and steel buffer springs are also considered: the former were considered to be less effective (but the data were provided by a manufacturer of steel springs!). The fatigue limit of steel springs is mentioned.

Norrish, L.B. (Paper No. 304)
Locomotive repair policies. 430-41. Disc.: 441-9.
Sets out two types of repair policy: the Belt system adopted by the LMS (which demanded an extensive stock of replacement parts) and a more ad hoc policy in which components were repaired, and if necessary manufactured for replacement. The paper related to South American conditions rather than those at Crewe or Derby. Cited H. Fowler's paper on Locomotive repairs presented to the Institute of Transport in 1929 in which it was claimed that the 300 types inherited at the Grouping had been reduced to 129. Participants in the discussion included P.C. Dewhurst (444-5) and E.J. Beckwith (446-7)..

Windle, E. (Paper No. 305)
Locomotive valves and valve gears. 450-73. Disc,: 473-7.
Mainly concerned with the design of Walschaerts valve gear, but also includes the design of piston valves. The advantages of Walschaerts gear over Stephenson motion were listed as lighter (approximately half the weight); simple to standardize; inside of the frame is kept free from pipe lines and subsidiary fittings; the elimination of straps and eccentrics and simpler manufacture (drop stampings) and assembly outside the frames; simple to inspect when in service; simpler to reverse and power reversers not required. Notes on the suspension of the combination lever and setting the gear. Also noted that Gresley had fitted ball bearings to the eccentric rods in 1916.
Discussion: C.C. Jarvis asked about exhaust steam temperatures and cut-offs. Hobson (474) considered the power absorbed in overcoming compression pressures due to pre-admission. He asked for comparitive maintenance costs of Walschaerts versus Stephenson gears and was informed that the cost of lining eccentrics was high.  R.J. Robson (474-5) observed that vallve lead and preadmission are very important factors. He introduced statistics relating to eight of the Gresley Pacifics which had been modified with long travel valves: these had each run over 500,000 miles and Royal Lancer had achieved 613,366 miles. G.M. Wells (476) noted that in India the fitting of long travel valves on Stephenson link equipped locomotives led to truly remarkable running...

Journal No. 114

Cardew, C.A. (Paper No. 306)
Some observations on the practice of providing lead with the piston or slide valves of modern locomotives. 486-497. Disc.: 497-34.
Paper was presented by H. Holcroft who opened the discussion. Considers that lead was introduced on the Stephenson Patent type 2-2-2 in 1837. The Authors conclusions are.

  1. There is no need to provide lead to bring the reciprocating parts to rest at the end of the stroke. The compression of the exhaust is a more satisfactory method of doing this, even if it is necessary, which the Author does not consider is the case.

  2. Under modern conditions there is little necessity to have lead to obtain a high initial pressure in the cylinders, which can be better secured by means of.long valve travel and ample part areas.

  3. Lead is detrimental to the performance af the engine at starting and low speeds; and under these conditions it also lowers machine efficiency, causing unnecessary wear and friction.

  4. The introduction of lead results in undesirable changes in other valve events, causing early release and compression. In consequence there is loss af power and the steam consumption is rather higher, especially if the lead is considerable or increases at early cut-offs

Holcroft ended his observations with "Although the Author seems to condemn lead generally; I do not think that is quite so bad as he makes out; there are some points in its favour". (p. 501). H. Chambers (504-5) refered to his early firing days when he experienced locomotives with Stephenson link motion and short travel which were extremely uncomfortable to travel on at high speed due to the severe compression. Miss V. Holmes (508-9) noted that she had attempted to survey locomotive valve events and found a lack of agreement as to whether lead should be constant, or should vary with cut off. Paper awarded Alfred Rosslin Bennett Prize  

Adams, C.F. (Paper No. 308)
Electrical equipment on steam trains for cooking and heating. 535-59. Disc.: 559-66.
Gresley introduced electric cooking on the quintriple articulated set for the GNR in 1921. A very wide range of electrical equipment was fitted and this extended to one carriage which featured electric heating in the compartments and in the corridor as well as water heating in the toilets

Loach, J.C. (Paper No. 309)
The locomotive and the track: aspects of their relationship. 567-85. Disc. 585-95. 13 diagrs.
Presented at Sixth Ordinary Meeting of the Birmingham Centre at the Queen's Hotel on 29 March 1933 at 18.45; chaired G.S. Bellamy. Figure 1 superimposition of tyre profiles from Caledonian, Great Northern, Great Western, LBSCR, LYR and Midland Railways. Fig. 2 shows cotact between tyre and rail. Contact at two points: tread with surface of rail and flange with side of rail. Wear of tread depends upon work performed. Wear of tread leads to hunting and oscillation. Discussion of rolling contact. Sliiping increased tread wera and wear was greater at point adjacent to balznce weights. Check rails caused wear. Play had to be provided if more than four wheels: thus the wheelbase is significant. Two wheel types received particular attention: the 2-4-2 which led to oscillation and front-coupled. Diamond crossings were difficult to negotiate. The work of Prof. C.F. Uebelacker was cited and that of Dymond for the GWR in the discussion. 0-8-0, even with flangeless third axle had a greater haulage capacity than an 0-6-0. Rolling and nosing. Bogies and pony trucks. Fig. 9 shows redistribution of weight on a 2-6-2T with pony trucks: load on trucks increases as deflection increases. Wear due to chemical corrosion was severe at Soho Road in Birmingham.. Discussion: R.G. McLaughlin (586) wondered if braking increased the severity of the derailment at Leighton Buzzard; H. Chambers (586-7) noted that the Great Western had increased the flange depth from 11/8im ti 1 5/16in and "would not take any action unless there was a reason for it"; S.R.M. Porter (587-9) commented on the coefficient of friction on wet and dry rails and on the importance of side play in the axles on curving characteristics which he considered to be more important than flangeless inetrmediate wheels. Also introduced a Dr Ing Verelacker (Uebelacker?) J.T. Jones (589) noted that GWR axleboxes were designed for a neat fit into the horn plates.

Journal No. 115

Williams, Charles. (Presidential Address)
Colonial railways. 607-40.
Several maps show the location of railways in the British Colonial Empire many of which have long ceased to exist. There are further maps for Africa.. At that time Palestine was one of the many Colonies and the difficulties of working therein with its many holy days was noted. In part the paper reflects the activities of the Crown Agents in the supply of locomotives and rolling stock (both freight and passenger), many items of which are illustrated. The lines were constructed on several gauges. Sir Henry Fowler gave the vote of thanks.

Hanna, C.D. (Paper No. 307)
Oil electric traction. 642-84. Disc.: 684-713.
Meeting held at Institution of Mecanical Engineers on 23 March 1933 chaired by W.A. Lelean. Lady Hamilton and company: diesel electric railcars manufactured by Armstrong Whitworth and evaluated on the LNER. Dretails of test running of Tyneside Venturer in the Newcastle and Middlesbrough areas including some work on severe gradients of 1 in 44. Claimed to be highly reliable. Details of operating costs. Maintenance. Lady Hamilton worked in the London area for a time and returned to Newcastle at an average speed of 47.6 mile/h. The Tyneside Venturer was re-equipped by the LMS as a luxury vehicle to provide a service between Euston and Castle Bromwich for the British Industries Fair. Average speeds in excess of 50 mile/h were achieved. A 250hp diesel electric shunter was also developed and tested against a small steam shunting locomotive (probably J71). The railbus is also described. At no point is the manufacturer (Armstrong) mentioned, but both the LNER and LMS are thanked for thrir cooperation: presumably Hanna was an independent assessor. Discussion: C.E. Williams (684-6) noted that the Royal State Railways of Siam (Thailand) operated diesel-electric locomotives and these were capable of being evaluated on the Federated Malay States Railways (Malaysia). J.S. Tritton (686-8) noted that Richards had produced an excellent paper on the comparison of various forms of motive power (Proc. Instn Civ. Engrs., 1933, 236 Paper 4908): he noted that the steam shunter was an antique and that a Sentinel should have been used for comparison. J.W. Beaumont (688-90) argued that a Sentinel would have been more economical than the diesel electric shunter; he also noted that a Sentnel railcar had run from Birmingham to Willesden and suggested that the 200hp Sentinel locomotive produced that value at the wheels. H. Chambers (690-1) noted the heavy depreciation with diesel locomotives. D.R. Carling (692-3) described the performance of the diesel electric railcars as being quite moderate feats. N.A. Shore (700-1) argued in favour of mechanical transmissions. Mercernoted the superiority of diesel engines in merchant ships: had the advantage of low speed.. 

Belfiore, Pedro A. (Paper No. 311)
The condensing locomotive on the Argentine State Railways. 715-30. Disc.: 730-45.
‘Sistema Argentino’ of Argentine State Railways

Beatty, J.W.  (Paper No. 312)
The Manchester and Altringham electrification. 746-69. Disc.: 769-79. map, 5 illus., diagr.
Presented at Queen's Hotel, Birmingham on 16 November 1932; chaired by G.S. Bellamy. 8¾ miles of LMS/LNER Joint railway with twelve stations. Electricity supplied through Lo9ngford Bridge sub-station from the Stretfoard Electricity Board to railway sub-stations at Old Trafford and Timperley. Overhead: 1500V DC. Power cars weighed 57 tons. Axle mounted motors. Pantographs. Circuit breakers. Electro pneumatic control.

Journal No. 116

Baker, John (Paper No. 310)
Railway breakdown cranes. 785-810. Disc.: 810-34.
Subsequenty cited by Lund in his Paper 493. Presented at Eighth Ordinary Meeting Institution of Mecanical Engineers at 18.00 on 7 April 1933 chaired by W.A. Lelean. Considered loading gauge, axle load, stability, springing (coil in America; leaf in United Kingdom), travelling gear, jibs, tail, hoisting gear, derrick gear, slewing, Spencer Hopwood boilers.

Griffiths, S. (Paper No. 315)
Anti-vacuum or snifting valves. 835-56. Disc.: 856-77.
Paper from Western Australia

Hubbard, R.K.  (Paper No. 314)
Standardisation from the point of view of the enginer and of the storekeeper. 880-904. Disc.: 904-21.
Practice in the Argentine, but also quotes from Paper by W.K. Wallace of the LMS entitled Railway purchases and stores.:

Macbeth, Colin. (Paper No. 313)
The application of rubber in railway engineering. 929-66. Disc.: 966-72. 32 figures (illus. and diagrs.)
Presented at Manchester Literary & Philosophical Society on 10 February 1933 at 19.00: J.N. Gresham in chair. LMS coach used over 300 rubber components: 34% in buffing and draw-gear and 24% in suspension. Bogie suspension was limited at that time to experiments on the Baltimore & Ohio Railroad and by Goodyear. Resilient wheels were beginning to be developed. Applications on locomotives were illustrated by auxiliary suspension sptings on a Pacific locomotive and on a 4-6-0. Hairlok, rubberized horsehair and rubber diaphragms are mentioned for seating in coaches. Load deflection and stress strain curves. Gresham (968) complained about variable properties.