The Locomotive Magazine and Railway Carriage and Wagon Review
Volume 33 (1927)

key file

No. 413 (15 January 1927)

Pacific type locomotives: Nigerian Railways. 1. illustration, diagram (side & front. elevations)
Supplied by Nasmyth Wilson under supervision of Crown Agents for the Colonies

Recent locomotives for the Egyptian State Railways. 2-3. 2 illustrations
North British Locomotive Co. 2-6-2T and 4-4-2T designs.

Southern Railway electrification. 3.
Electrical equipment for Central Section ordered Metropolitan-Vickers including motors and control gear for the motor coaches. Caterham Valley lie included..

A novel tee-square and drawing board. 3.

Railway electrification in Sweden: Stockholm and Gothenburg. 4-7.. 7 illustrations, diagram (side elevation), map
Including power house at Trollhattan and outdoor transformer station. Electrification at 16000V singlde-phase.

2-8-2 tender locomotives for the Barsi Light Railway. 7. illustration. diagram (side elevation)
Nasmyth Wilson

A Jacquet.. "Type 10" express locomotive, Belgian National Railway Company. 8-11. 4 diagrams. including side elevation.
Type 10 designed by J.B. Flamme fitted with doublw chimney

Technical essays. VIII—Standardisation. 11.

Die-casting machine. 12. illustration
W.H. Dorman & Co. of Stafford

Egyptian State Rys 12
124 miles of narrow guage between Luxor and Assouan converted to standard gauge. Originally 3ft 6in gauge military railway

E.  Lasseur. Hungarian State Railway locomotives. 13-18. 7 illustrations
4-6-2, 4-6-0, 2-6-2T. 2-8-2T, 2-6-2, 4-8-0, 0-6-0+0-6-0 and 2-6-0+0-6-0 Mallet with Brotan fireboxes

Ahrons, E.L.. The early Great Western standard gauge engtines. 18-19. 2 illustrations.
Locomotives built by Company between 1874 and 1878: 0-6-0 and 2-4-0T.

Central buffer couplers. 20-2. 6 diagrams.

A heavy spring finishing press. 22-3. 2 illustrations
Henry Pels machine at Barassie Works, LMSR

Stephenson Locomotive Society. 23
Annual dinner held at Holborn Restaurant on 11 December; effords to preserve Stroudley Gladstone and Paper by R.A.H. Weight on Locomotive performance during the past season (Pacific and Atlantic work on Great Northern section.

The locomotive history of the Great Indian Peninsular Railway. 24-5. illustration, diagram (side elevation)
Kitson 0-8-0ST Nos. 1274-93 and 0-6-0 M26 class.

Institution of Locomotive Engineers. Modern locomotive superheating. 25-8. 4 diagrams
Paper  211 by H.E. Geer

Great Western Ry. 28.
No. 5001 Llandovery Castle fitted with 6ft 6in coupled wheels. No. 102 La France withdrawn. Former Taff Vale Railway Works in Cardiff closed and replaced by Caerphilly Works.

London and North Eastern Ry. 28
Named night sleeping car trains: Highlandman, Aberdonian and Night Scotsman.

London Midland & Scottish Ry. 28
Floriston water troughs.

The Panama Railway. 28-31. 2 illustrations, diagram (side elevation), map
The Spanish built a mule trail built of stone called the Royal Road across the Isthmus. In 1838 the Republic of New Granada granted a French syndicate a concession to build roads and railways but nothing was achieved. In 1849 American promoters and engineers took over. The railway began at Aspinwall (now Colon) on the Atlantic, encountered difficulty in bridging the Chagres river due to sudden extreme floods, and reached the summit ridge in January 1854 and was completed in the following year. a gauge of 5 feet was adopted. The locomotives included four designed by George Ercol Sellers of Coleman, Sellers & Sons of Philadelphia which had been designed with a view to assisting adhesion via a central rail gripped by rollers driven by additional cylinders (an engraving shows this arrangement).  When the Canal was constructed the railway was relocated.

A quaint passenger train, Shropshire and Montgomeryshire Ry. 31-2. illustration
Gazelle on Criggion branch. Locomotive built in 1896 by Dodman & Co, of King's Lynn for W. Burkitt, It was designed by S. Stone of the GER. W,G, Bafgnall rebuilt it as an 0-4-2 in 1910/11. The train in the photograph consisted of a former London County Council horse-tramcar.

London & North Eastern Ry. 32
New three-cylinder 4-4-0 passenger enngine to be built at Darlington to be known as D49, with first order for 28 engines. Some of these engines are to be compound (KPJ: emphasis), probably three. The boilers will be similar to the last 2-6-0 class built at Darlington, also the cab. (KPJ: K3 was last such, and boiler did not follow that pattern).
Some of the J39 class were stationed at West Hartlepool, Saltburn, Middlesbrough and Newcastle and others were to go to Grimsby and Immingham. On the North Eastern Section they were intended to displace certain P2 and P3 classes which were intended to be transferred to the Great Eastern district following alteration to their chimneys.
The 4-6-0 Cambridge engine sent to Craigellachie for bridge tests was No. 8526. It had since been returned, but during its absence No. 9454 (NBR 0-6-0) was sent to Cambridge in its place. NBR section No. 9903 Cock o' the North had been fitted with a Worthington feed water heater and pump.
The Prince of Wales visited Doncaster Works and inspected Pacific locomotive No. 2553 Manna which was renamed Prince of Wales.

London, Midland & Scottish Railway (L. & N.W. Section). 32
Nos. 13033-5 were the latest 2-6-0 mixed traffic engines to be built at Crewe and put into service on this section. Crewe had taken delevery of 4F 0-6-0 superheater goods emgines Nos. 4397-9 ex-North British Locomotive Company and 4341-5 ex-Kerr Stuart & Co. Last two 0-6-0T shunting tanks, Nos. 16498-9 delivered from Vulcan Foundry. Precursor class No. 2017 Tubal had been converted to George the Fifth with superheater and renumbered 5244. Latest addition to class G1 (superheated with Belpaire boiler) was former C class No. 2541 renumbered as 8953. Several Claughton class were running with oil-burning apparatus which had formerly been fitted to Prince of Wales type: these included Claughton type Nos. 986 and 2174 and Prince of Wales Nos. 5628 and 5645. Former North London Railway 4-4-0T type Nos. 2812, 2836, 2855 and 2856 (LMS Nos. 6486, 6467, 6463 and 6464) had been broken up at Bow. A former North Staffordshire Railway 2-4-0T had been working on the Broad Street to Poplar service.

E.J.H. Lemon. 32
Mr E.J.H. Lemon had been appointed Carriage & Wagon Superintendent from 1 January 1927. His predecessor, R.W. Reid, became Vice President for works and ancilliary undertakings on same date. Lemon was Manaager of the Derby Carriage and Wagon Works from January 1917; was appointed Divisional Carriage & Wagon Superintendent of the LMS in March 1923 and from 1 January 1925  Divisional Carriage & Wagon Superintendent at Newton Heath and Earlestown.

North Staffordshire Ry. locomotive shops in Stoke-on-Trent. 32
Closed 31 December 1926: staff transferred to Crewe and Derby.

Zeeland Steamship Co. 32
Transferred from 1 January 1927 from Folkestone to Flushing to Parkestone Quay with departure from Liverpool Street at 10.00

Leeds, Halifax & Bradford Junction Ry. 32.
Erratum: locomotive No. 99 should have been No. 399 (printer's error)

Southern Ry. 32
1927 programme for new construction: ten express locomotives of the King Arthur or Lord Nelson type; five 4-6-0 goods engines; twenty River class tank engines and 0-8-0 shunting locomotives.

Reviews. 32.
Les locomotives articulées. L. Weiner. Brussels: Buggenhoudt

Correspondence. 33

The "Sussex's" reversing gear.  Malcolm M. Niven
Re Briggs observations on Sussex of the L.B. &.;S.C.R. in November issue. The Sussex' was re-built byStroudley in 1871 at :'Brighton, and was originallly a Craven design built by Robert Stephensori & Co. in 1864. 'She had not Joy's valve gear, but had Dodds' gear: 'The wedge motion was, however, operated by Joy''s fluid pressure reversing gear. A single eccentric actuated the valve of each cylinder; lt moved.transversety across the crank axle from front to:back for fore or back-going gear. The axle had a square for the eccentric seat with a slot through the eccentric which allowed it to slide across the axle. A small cylihder at each end of the,slot worked over a corresponding ram fixed in opposed faces of the square on the axle. Oil was forced into each end of the axle at the centre through a pipe. The small oil ducts passed over the web of the crank through the pin and back along the.other web to the square portion of the axle where lit' 'cnteted the small cylinders according to which it actuated fore or back gear. The eccerrtric could be put between extreme positions according to the perceneage of cut-off; or for rnid-gear
Air pressure from the Westinghouse pump.actuated.the gear from a srnall, cylinder on the footplate. A hand wheel also was placed to .act in absence of air pressure. Stroudley did not fit this.to Sussex it was Billinton's introduction.  Stroudley, however, fitted, his .characteristic cab.and standard mourrtings on the boiler such as Adams's safety valves.with open top.dome.
The Sussex No. 203, was an outside framed engine, to.all wheels with cylinders (after the rebuild), 17 in. by 23 in., originally she had 16½ in. by 22 .in. cylinders. She worked until the New Year of 1899.
It may be mentioned that David Joy read a paper before the Institution of Mechanical Engineers in 1894 giving a specification of his fluid-reversing gear.
I know Joy's valve gear too well. I had a compound traction engine in 1908 fitted with it.
Perhaps. some Brighton reader could itlustrate Sussex; a woodcut appeared in The Engineer, sorne years ago.

L.B. & S.C. engines. Frederick William Holliday
Response to letter by W.E Briggs in November Issue. Claimed that Stroudley Gladstone caused great surprise to engineering community by having a big coupled leading wheel (6ft 6 in diameter) and that would come off track at curves, but locomotives rode well on curves. Old Sussex was built by Robert Stephenson & Co. in 1864 and rebuilt by Stroudley in 1871. The rebuilding included Stroudley standard boiler, cab, chimney and cylinders. The framing at the rear as extended to take the cab. "She was a fine engine"  
Response to letter from Bennett. Craven No. 25 was stationed at Battersea running shed and worked between Victoria and Croydon in conjunction with Craven tank engines Nos. 11, 167. 213, 214 and 217. No. 11 was "a splendid little engine" with boiler pressure limited to 100 psi. "She was always in evidence". No. 25 was scrapped in about 1878.

Brewer, F.W. Modern locomotive superheating. 33
See letter by J.S. Gillespie on p. 407 of Volume 32. the definition Modern locomotive superheating can be taken to apply in my opinion to the high and relatively high systems. It ids quite clear that my article was confined to such systems and to the now generally accepted apparatus of the “live” heat or fire-tube type. Sir J.A.P. Aspinall's superheater of 1899 was not of that type. Altough fitted in a recess of the boiler—the front tube-plate being set back for the purpose—it belonged to the smokebox class. It utilised the heat in the waste gases, and owing to its comparatively small size, produced merely a low degree of superheat—approximately 90 degrees.. Six of the L.&Y.R. 4-4-2 inside-cylinder express engines were equipped with it; one engine of the first series of twenty and five engines of twenty 4-4-2s.
It is true that a smokebox superheater need not of necessity be a low-degree one. The early form of the Schmidt apparatus (1998) was of that order, but in addition to the heat given up by the waste gases it received direct heat from the fire by means of an extra large flue running the whole length of the boiler barrel, from firebox to smokebox. By this method a total steam temperature of about 600 degrees was obtained. Another pattern of smokebox superheaters, for which a high temperature, roughly 500 degrees, was claimed, was known as the Phoenix. This, which was introduced in 1910, depended entirely on waste heat for superheating the steam. It comprised a large number of tubes arranged in series, which tubes occupied a considerable space in the extended smokebox. This is a characteristic feature of most of the waste gas superheaters which have so far been designed and it constitutes their main drawback as in the case of Sir John Aspinall's ingenious devive, its dimension are perforce restricted and its effectiveness is proportionately diminished. The idea of making some tangible use of the heat which would otherwise be lost has .presented a problem of fascinating interest, but in the matter of supenheating ,the steam by .smokebox gases alone, it is now pretty generally agreed that the.advantages of such a method are outweighed by its attendant disadvantages, with, at any rate. locomotive boilers of normal design.
The,L &Y.R: apparatus of 1899 was not the starting point of modern locomotive superheating, properly so called, and, in .conclusiorr, I, cannot. do, bebter than quote Sir John Aspinall acknowledged the limitations of this type in the discussion on Fowler's paper presented to the Instn Civ. Engrs in 1914.on Superheating steam in locomotives): "That superheater did not give anything like sufficient superheat, or anything like the superheat which could be obtained with modern appliances, although it did a certain amount of good work, the engines on which it was fitted running more freely than thier fellos." The use of the word "modern" by Sir John speaks for itself.  

[Horseley Iron Co.]. 33
With reference, to our remark on page 406, December Issue that the Horseley Iron Co. had built some engines (or were said to have had) for the Grand Junction Ry., a correspondent informs us that they never had any of their build on the G.J.R. The Horseley Iron Co.'s locomotives were on the St. Helen's Ry

North British Locomotive Co. 33
LMS placed order for fifty locomotives and tenders with NBL [KPJ Royal Scots]. Ten standard 4-4-2 tank engines of LTSR type were in hand at Derby Works

Sentinel Cammell coaches. 33
Three double articulated Sentinel Cammell coaches had been ordered by the Great Indian Peninsula Ry. and four coaches by the Ceylon Govt Rys.

No. 414 (15 February 1927)

New Kitson Meyer type locomotives for Colombia. 35 + plate. diagrams., map
2-6-6-2T for Giradot line. P.C. Dewhurst involvement.

Exceptional load. 46.
Machinery for Arapuri Dam transported by out-of-gauge train from Auckland to Putaruri on 13 December 1926.

William C. Wilson. 47.
Retired after sixty years service with North British Locomotive Co.

The locomotive history of the Great Indian Peninsular Railway. 48.
Reference is made to a series of twenty 2-4-0 passenger engines, Nos. 200-219, built by the Avonside Co., and added to the railway stock of motive power in 1867. (Mr. Cortazzi was 'locomotive superintendent 1861- 1868.) "The last six of these engines were kept m stock In Bombay until 1875.

The Institution of Locomotive Engineers. 52-3
At the meeting held on January 14, a paper on "The Internal Combustion Boiler and its application to the Locomotive" was read by Mr. O. Brunler. After commenting on the necessity for engineers to find some more effective means of applying and utilising the heat generated from fuel in locomotives, the author proceeded to describe and illustrate an internal combustion boiler, the fundamental principle of which is the kindling and maintenance of a flame burning in water, in order to produce steam for power or heating purposes. For locomotive fuel to be utilised in this manner, liquid or powdered solid was recommended.
In order to explain the operation of the boiler, a cross-section of it was shown. Combustion is started in the boiler by means of a pilot lamp. Fuel oil and the air for combustion are supplied to the pilot lamp and to the main burner under a pressure which barely exceeds the boiler pressure. Before starting, the water level in the steam generator is lowered below the lower outlet of the burner. The cover of the pilot lamp is removed and the fire-clay lining in the pilot lamp is heated up to red heat by means of a blow lamp, or any other suitable method. The valves of the pilot lamp are opened, and the combustible mixture of oil and air ignites on the red-hot fireclay. Then the cover is pulled down again and the flame of the pilot lamp makes its way to the main burner. After a few minutes, when the burner is hot enough to vaporise the oil, the main regulating valve is opened, and the flame bums in the steam generator. As soon as the main flame bums on the surface of the water in the generator, the valve of the water reservoir is opened and the water rises up to the middle of the burner, and the flame then burns in the water, as shown in the diagram. A photograph of the flame actually burning in the water was shown by the lecturer.
By means of a superheater designed on the san:e principle as the pilot lamp, and whose flame burns in the steam reservoir or in the steam pipe, the steam can be superheated to any required degree.
The size of the flame, and, consequently, the quantity of steam produced, can be increased or decreased by turning one wheel only. As this. regulates the combustible mixture with a fixed ratio, It is impossible for the combustion to be altered through mistakes of an operator; once the regulating valve is properly set the combustion is always complete.
The flame temperature at the burner outlet is, approximately, 1,800° to 2,000°C. Since carbon monoxide bums to carbon dioxide at a temperature above 800°C., it is evident that at the high flame temperature of about 2,000°C. all the carbon monoxide is converted into carbon dioxide. The steam-gas mixture which has been frequently analysed has never been found to contain carbon monoxide. This shows that fuel can be burnt more completely in water than in the open. The combustion under pressure brings the molecules of the fuel into better contact with the oxygen of the combustion air; therefore, under pressure, and in water, a perfect combustion can be obtained. Due to the very high flame temperature, the water surrounding the former evaporates instantly. It is evident that after a few minutes the required steam pressure can be obtained. As a rule, a boiler pressure of 170 lb. per sq. in. is reached in practice within six minutes after the flame is submerged m the water.
The gases produced during combustion consist of nitrogen, carbon dioxide and slight traces of oxygen (about ,05 to .03 kg. per kilo. of oil burnt), and are mixed with the steam forming a steam-gas mixture, which consists of about 50 per cent. of steam and 50 per cent. of gases, according to the fuel used, the ratio of steam and gas varying slightly. The followmg is a typical analysis of the composition of the steam-gas mixture:
Carbonic acid 3.;6 kg. (1.;8m3)
Oxygen  0.;04 kg. (.04m3)
Nitrogen 12.;91 kg. (10.2m3)
Steam  15.;1 kg. (19.5m3)
This steam-gas mixture consists of the same gases which are produced in gas and oil engines, the only difference being that in these engines the amount of steam in the combustion gases is much less. The specific heat of the steam-gas mixture is low, and a mixture of steam and gas has an extremely high power of expansion. Consequently, the highest efficiency is obtainable from a highly superheated steam-gas mixture.

On January 27 an exhaustive paper was read by E.C. Poultney on Locomotive performance and its influence on modern practice.
The author first enumerated the primary factors expected from a locomotive regarding haulage of its train, etc., and then proceeded to summarise the in- fluence of weight on the ultimate power available, as follows :-
The influence of weight on the ultimate power available is considered:
Anything that raises the indicated tractive effort curve for any given boiler, increases pull at the tender. This would mean improved engine performance. Valve gears, cylinder proportions, compounding, and other modifications leading to a better use of steam, tend in this direction.
Anything which improves boiler output for given engine conditions also raises the traction curve. The superheater, feed heater and the firebox with its grate deserve attention, but proportions of tube length to diameter and other features covering combustion air supply are also important
Anything which decreases machine friction at a given power output raises the tender dran-bar pull curve.
Anything that lowers locomotivc weight for a given capacity is important. It also means a higher net pull.
Anything that lowers rolling and head air resistances is deserving of attention.
A number of tables were shown to illustrate the gains and losses in steam generation resulting from different additions or modifications to the boiler. The effect of a brick arch, for instance, was noted, and a gain of quite 5 per cent. in efficiency secured by the employment of this comparatively simple and inexpensive adjunct.
Superheating was carefully analysed and various points connected with it, outlined, showing that, although the fitting of a superheater reduces the extent of evaporating surfaces and somewhat reduces efficiency of a superheater boiler, this is no argument against high temperature superheating, which, as was shown in the paper, offers great and important advantages over saturated steam.
A number of illustrations showing different locomotives in which special features have been embodied to secure some of the different gains enumerated by the author were shown, including compound locomotives, superheated engines, valve gears and water tube boilers as well as some results from the performance of the Horatio Allen, of the Delaware & Hudson Railroad, wherein a machine efficiency of 93.;86 per cent. and a thermal efficiency of 8 .;02 per cent. was recorded. In the discussion which followed and in which several members took part, Mr. Carr (B.N.R.) touched a very important feature in modern locomotive design by pointing out the very small proportion of the total weight of engine and tender utilised for adhesion whilst axle loads had been increased, necessitating heavier and more costly permanent way.

H.M. the Queen's Saloon. L.N.E.R.  53
Rearrangements made to the Queen's day railway saloon, at the Doncaster works of the London and North-Eastern Ry. This vehicle was originally built in 1907. It was 67 ft. long, 69 ft. over buffers, and is carried :on two six-wheeled bogies. It was so arranged that it could form part of the Royal train or be used as a single unit when her Majesty travels alone, as sometimes happens on her visits to Goldsborough or to Sandringham.
It consists of a day saloon, a private saloon, and a dressing room, with accommodation for the equerry and an attendant's balcony, fitted so that meals can be prepared when the saloon forms the principal unit of the train. It is customary on these occasions to serve meals in the day saloon. This latter is the principal apartment, arranged in the Louis XVI. style, the furniture being light French mahogany, upholstered in green velvet. The small private saloon or boudoir is enamelled in jade, and is upholstered similarly to the day saloon. The Queen's dressing room is entered from the boudoir.
All the details of the decoration and the furniture were settled by her Majesty: who took great interest in the re-arranging and re-conditioning of the vehicle. It is lighted throughout by electricity, with shaded lamps on the bracket tables and lino-lights concealed behind the cornice round the full length of the day saloon and the boudoir.

London, Midland & Scottish Ry. (L. & N.W. Section).  53
No. 4346 was latest 0-6-0 ex Kerr Stuart & Co., to be delivered to Crewe for service on this section. Delivery of twenty-five similar engines ex Andrew Barclay & Co., had been commenced; the first four engines, Nos. 4357-60, being already at work. A further five 2-6-0 mixed traffic engines have recently been completed at Crewe, Nos. 13036-40.
We understand that the 4-6-0 engines ordered from the N. B. Loco. Co. Ltd. are to have three H.P. cylinders (18in x 26in) and 6 ft. 9 in. wheels.
Experiment class 4-6-0, No. 1993 Richard Moon (L.M.S. No. 5472) had been converted to superheater. Latest addition to class G1 (superheater) was No. 2528 (now L.M.S. No. 9027), which formerly was class D. Special tank shunting engines Nos. 3379 and 3651 and ex NLR 4-4-0 passenger tank No. 2824 have been withdrawn.

Pullman cars for Continental service. 54-6. 3 illustrations
Thirty cars constructed by Leeds Forge Co. Ltd for Wagon-Lits services to Nice and Milan. Kitchens had coal-fired ranges.

Ahrons, E.L.. The early Great Western standard gauge engtines. 57-9.
0-6-0ST No. 1134 Buffalo and 2-2-2 Sir Alexander classes

Central buffer couplers. 59-60. 2 diagrams

A novel carriage ventilator. 61-2. 4 diagrams
Airvac

G.W.R. 20-ton wagons. 62
Discounts offered to customers as incentive to use high capacity wagons, including through the tipping appliances at coaal exporting docks in South Wales.

The manufacture, heat treatment, and testing of locomotive axles. 62-4.
Including steel specifications.

The Panama Railway. 64
Locomotives supplied by the Portland Locomotive Works between 1852 and 1873 with works numbers and names

Correspondence. 65

Stephenson Locomotive Society. Re L.B. & S.C. Locomotive "Gladstone. J.N. Maskelyne
It is with the utmost satisfaction that the Council of the Stephenson Locomotive Society is able to announce that negotiations for the preservation and acquisition of William Stroudley's celebrated Express Passenger Locomotive Gladstone are now completed. Everyone interested in railway history will remember that this locomotive was the first of a class of thirty-six which made the name of its designer famous throughout the world. Built in 1882, and put to work in December of that year, the Gladstone has completed forty-four years' service. It has just been withdrawn by the Southern Ry. Co., in order to be restored to its original condition and re-painted in the very distinctive yellow colour adopted by Stroudley. Arrangements have been made with the London & North Eastern Ry. Co., for the Gladstone to be housed in their Railway Museum at York, until such time as accommodation can be found in London, possibly at South Kensington Museum, in the course of a few years.
The Stephenson Locomotive Society has made itself responsible for the cost of the work of restoring the engine, and has opened a fund to defray the somewhat heavy expenses. Anyone who may be interested in the preservation of historic locomotives is invited to contribute to this fund, and, any donations received will be acknowledged gratefully by the Society's treasurer, Mr. F. H. Smith, 159, Albert Road, Croydon, Surrey, to whom all contributions should be sent.

Three-cylinder locomotives. William T. Hoecker.
Reply to correspondent "Diamond," whose letter appeared on page 407 of the December Locomotive. The fact that locomotive builders spend considerable sums in advertising, in order to popularise a certain type of construction, is no indication that the design in question is the most suitable that can be adapted to fit all circumstances. The first Union Pacific 4-12-2 locomotive has been in service but nine months, so that its ultimate success cannot yet be predicted with confidence. The well-known history of other multi-cylinder locomotives in America should not be forgotten by the over-optimistic.
Since" Diamond" requires proof of the statement that it is impossible to obtain equality of power-output from the several cylinders of a 3-cylinder locomotive equipped with a combination valve-gear, he is advised to consult the following publications ;-
I. Pamphlet issued in 1924 by the Lehigh Valley R.R. Co., and the American Locomotive Co., containing numerous indicator diagrams taken from the Lehigh Valley 4-8-2 engine No. 5000, equipped with Gresley gear.
2. Railway andj Locomotive Engineering, Nov. 1924, page 331, depicting indicator diagrams taken from South Manchuria Ry. 2-8-2 engine No. 1601, equipped with Gresley gear.
3. Robert Garbe-Die Dampflokomotiven der Gegenwart- 1920, pages 573 and 842.
4. Proceedings of the Institution of Mechanical Engineers, London, 1925, pages 969 and 982, with; special reference to the Gresley gear.
"Diamond's" statement concerning "varied loading at high revolutions" is not in accord with the consensus of opinion among engineers, as designers of multi-cylinder locomotives invariably strive to obtain equal piston loads in all cylinders, to insure a uniform turning moment.
I should like to ask" Diamond" one further question. It has recently been stated in the technical press that the L. & N.E.R. "Pacificr' locomotive No. 4477, Gay Crusader, has a " modified valve-motion." What does this modification consist of, and why was it deemed necessary?
(We understand the modification to the valve motion of engine No. 4477, L. & N.E.R. is to give a longer valve travel, and the result has been to slightly reduce the coal consumption. Editor.)

Recent accidents. 65-6
The Inspecting Officers of the Ministry of Transport issued their reports on four accidents, all occurring on the London and North Eastern Ry.
On 22 July 1926, the 8-20 p.m. passenger train from Newcastle to South Shields had just started, after stopping at Gateshead East Station, when it was run into in the rear by a light engine which had followed it from Newcastle. The passenger train consisted of five bogie vehicles, weighing 111 tons 1 cwt., and was drawn by 2-4-2 tank engine No. 1599, weighing 53 tons 16 cwt. The light engine was No. 698, of 4-4-2 type, and weighing, with six-wheeled tender, 121 tons 10 cwt. The last vehicle of the train was telescoped and all the others more or less damaged, whilst the light engine had the front buffer beam damaged beyond repair, the left frame badly bent in front and other minor damage; twenty-one passengers complained of shock or injury. The mishap was due to the temporary inability of the signalman at Gateshead Junction to replace the home signal to danger after the passing of the passenger train, and permissive working being in force between Newcastle and Gateshead, the driver of the light engine, who was close behind, took the signal as referring to him. The signals are power operated on the electro-pneumatic system, and the inability to replace the home signal was due to the distant signal check lock not clearing, although it was after- wards found in working order, and Major Hall suggests, among other recommendations, that the check lock, which is not generally used on modern power installations, should be removed.
When the 9-47 p.m. electric train on the circular service from Newcastle via Monkseaton and Heaton, on August 7, had passed Manors station on the homeward journey, it came into sidelong collision at Manors Junction at about 10-50 p.m. with a goods train which was crossing immediately in front of it. The dead body of the motorman was subsequently discovered under a bridge a short distance west of Heaton station, and the train was consequently running driverless. Considerable damage was done to the stock, and sixteen passengers complained of injuries. Subsequent examination showed that the automatic control, generally known as the "dead man's handle," had been tied down with two handkerchiefs so as to keep the button depressed. Major Hall concludes that this had been done deliberately by the motorman, who was therefore alone responsible for the accident.
The third report referred to the level crossing accident at Naworth on August 30, which aroused much public comment at the time, the 1-18 p.m. express passenger train from Newcastle to Carlisle colliding with a road motor coach which had been irregularly allowed to pass over the crossing. The train consisted of two six-wheeled vans next to the engine and six bogie coaches, weighing in all 176 tons, was drawn by 4-4-0 type engine No. 1929, weighing 91 tons 6 cwt., and was travelling about 50 miles per hour. The train was not derailed and suffered but slight damage; the road coach was, however, completely wrecked, and, of its sixteen occupants, eight were killed, three seriously and three slightly injured, whilst the porter in charge of the gates was killed also. Lt.-Col. Mount states that no blame of any kind can be attributed either to the driver of the train or of the road motor, and that the porter in charge was solely responsible, having (1) failed to observe the position of the indicators in the porters' room, (2) omitted to place the signals at danger before opening the gates, and (3) failed to open the gates in the proper sequence. He also recommends that, having regard to the traffic over the crossing, its equipment should be brought into line with modern practice and the gates suitably interlocked with the signals.
The last case was a collision at Wortley East Junction, between Armley and Leeds, on September 18, the 6-38 a.m. passenger train from Bradford to Leeds running into a light engine standing on the up main line. The train consisted of five coaches, the first and last pair being of the articulated bogie type and the centre one a six wheeler; it was drawn by 4-4-2 tank engine No. 4549, weighing 621 tons. The light engine, which was stationary with its chimney facing the passenger train, was No. 6104, of the 4-6-0 type, whiich with six-wheeled tender weighed 119 tons. The train was travelling at considerable speed and 'injuries were suffered by thirteen passengers and all four enginemen, whilst the passenger guard complained of shock. Major Hall finds the driver of the light engine had stopped clear of the paints leading to. the goads line over which the signalman intended he should have passed. He does not blame the enginemen for this, but the signalman who. should have satisfied himself that the main line was clear before accepting the passenger train. The enginemen, however, should have carried out the instructions with regard to. the fireman proceeding immediately to the signal box to. remind the signalman af the engine's position. He also makes certain recommendations as to the signalling arrangements at this past.

Reviews. 66

The chronicles of Boulton's Siding. Alfred Rosling Bennett, London: Locomotive Publishing Co., Ltd.
Readers of these pages will have no need to be reminded of the series of articles with the above title contributed by Mr. Bennett between 1920 and 1925, and the interest which they aroused together with the amount of additional matter which subsequently came to light has induced him to republish them in book form, incorporating therewith all the further data which is now available. The book may be regarded as supplementary to the usually recognised text books an the locomot ive, dealing as it does, not with typical standard designs, but with a heterogeneaus collection of locomotives of endless variety, of the majorrty of which no. duplicates were ever built. It does more, however, than merely record a number of unique, and in same cases freakish, specimens of the locomotive engine, as, combined with the author's voluminous nates, it sets forth the life work of one who. made the locomotive a hobby, as well as a business, and showed a good deal of originality in the designs he produced. Mr. Boultan was a man of resource, and it is fortunate that his history and that of the works which he controlled, should be put on record, as, whilst adapting his products to. the needs of his clients, he was enabled to carry aut many interesting departures in locomotive construction and design. Whilst the whale story, embellished.with a number of anecdotes written in Mr. Bennett's well-known attractive style, is of outstanding interest to. the student of locomotive history, two sections of the work claim special attention. The first deals with the part played by I.W. Boulton in the development of the water tube bailer, and althaugh this particular feature has never established itself in favour with locomotive engineers, the value of a full account of what was, perhaps, the mast extensive series of experiments made with this type of boiler is obvious. The second gives, we believe for the first time, a complete record of the experiments made in using hat bricks in a locomotive firebox far generating steam without the emission of smoke, a condition considered paramount for the equipment of locomotive pawer an the Metropolitan Ry. prior to. its opening, and which led to the many mysterious rumours regarding Fowler's Ghost, as it was called, which are now definitely set at rest. In Chapter IV. Bennett regrets that there is no certainty as to when Trent, a 0-4-2 tender engine of Sharp's build, purchased by Boulton from the L. & N.W.R. and originally belonging to. the Manchester and Birmingham Ry., was built. There can, however, be no. reasonable doubt that all the four engines of this class possessed by the M. & B. Ry. first saw the light in 1842. The work is illustrated by no less than ninety blocks, many of which have been specially drawn far it, and form by no means its least valuable feature ..

Les rampes de chemins de fer et les lignes de montagne, L. Wiener. Brussels: Imprimerie F. van Buggenhoudt, S. . Lcndon: Locomotive Publish- ing Co., Ltd.
As a fitting supplement to his work an Articulated Locomotives, of which a notice appeared in our last issue, in this book the author deals with the problems the civil engineer has to. face in laying aut mountain railways. The fixing of the gradients, the course of the line and the gauge have to. be studied in relation to. the capacity for efficiently meeting traffic re- quirements. Then again, existing lines often have to. be modified or modernised to. meet altered conditions. Data far calculating pawer of the locomotives required, with due allowances far the fuel used, influence of curves, climate, etc., are valuable far reference purpases. The writer then gives leading particulars, methods of working, etc., of mountain lines all aver the world.
These include the various lines crossing the Alps, Rockies, Alleghanies and Cordilleras, as well as the railways an the frontier of India and in Burma. Plans of the curves of the Gothard, Loetschberg, and other Cantinental lines are given. A big section is then devoted to rack railways of various types, while the concluding chapter describes various forms of aerial ropeways.

Instruction book — M.L.S. locomotive superheaters. London : The Superheater Company, Ltd. Third Edition.
Based an experience gained fram the maintenance and operation of M.L.S. smoke tube superheaters fitted to. locomotives of all types and operating an practically every railway, the instructions given in this handbook provide practical information as to the mast efficient manner of installing, operating and maintaining the superheater apparatus. At the end of the booklet is a section devoted to. Questians and Answers regarding superheated locomotives.

The Locomotive of to-day (Eighth edition). London : The Locomotive Publishing Co., Ltd.
That the above meets the want of a popular and practical text-book an the mad ern locomotive, written in a style appreciated by students, engineers and locomotive men generally, is confirmed by its extraordinary success and universal sale. In this, the eighth edition, the publishers have entirely revised the book and have had the contents largely re-written. In details of practice which have undergone radical change during the quarter-century, the Locomotive of To-day has held its awn, the latest and mast up-to-date procedure has replaced the obsolete. Where boilers were built up of a number of plates, one often now provides the boiler shell, whilst another forms the wrapper plate. The latest and mast approved methods of securing tubes, including electric welding,

No. 415 (15 March 1927)

4-6-0 locomotives, Ceylon Government Rys. 69-70. illustration, diagram (side & front/rear elevations)
Light locomotive with 4ft coupled wheels buit by Nasmyth Wilson & Co. Ltd

Three-cylinder compound locomotive, London, Midland and Scottish Railway. 72 + plate f.p. 72. diagram. (side elevation)
PLATE MISSING

Electric passenger rail car and shunting locomotive. 77-8. 2 illustrations
Electromobiles Ltd of Otley supplied a battery poweered railcar to the War Office to convey personnel  at the artillery ranges onn Shoeburyness. A battery powered shunting locomotive capable of hauling 300 tons was illustrated.

Amac, pseud. The "Director" class, L. & N.E.R. in Soctland. 82.
The difficulties experienced by Scottish drivers with a strange design of cab, especially with the right-hand drive.

The locomotive history of the Great Indian Peninsula Ry. 83-5. 4 illustrations

Obituary. 86
John Metcalfe died at Redcar on 18 February 1927; aged 87. Born in Middlesbrough. Worked as a fireman on the Stockton & Darlington Railway from age 14. Drove the now preserved Derwent and worked on footplate for over fifty years.

Ferdinand Achard. The first British locomotives of the St. Etienne-Lyon Railway. 88-92. 2 diagrams
Reprinted in full from Transactions of the Newcomen Society.

Notes on  the manufacture of the Standard British Buffer. 92-3. 6 diagrams
Black-finished forging manufactured from mild steel. The type of furnace, hammers, forging and plating and machining of the spindle and buffer head are all specified.

[Edinburgh Pullman]. 93
Since the middle of February the Up and Down Edinburgh Pullman has been worked between London and Harrogate has been worked by Director class No. 5511 Marne stationed at Leeds' The train ran via Church Fenton and Knottingley. London men work the train with an Atlantic on alternate days.

Technical essays. IX—On the future policy of the mechanical department. 94-6..

Manufacture, heat treatment, and testing of locomotive axles. 97-8.

Locomotive with cylinders and frame in one steel casting.  100. 2 illustrations.
0-8-0 for St. Louis Terminal Railway with castings supplied by Commonwealth Steel Co.

L.B. & S.C. R. locomotive "Gladstone". 100.
Restoration nearing completion.

High power electric locomotive. 100.
William P. Durtnall paper to Junior Institution of Engineers (North East Coast branch) on design of 2200 horse power high speed locomotive.

Correspondence. 101

[Sussex's valve gear] William E. Briggs
Re M.M. Niven's remarks on Sussex's valve gear, and wish to make it clear that I did not mean in my first letter that Sussex was fitted with the well-known Joy radial valve gear, but with a gear invented by that same eminent engineer.
I quite appreciate the employment of the term "Dodd's gear," but as the gear employed on Sussex was always spoken of as Joy's in the shops at Brighton, I employed the term in the same sense in my letter
Unfortunately my time at Brighton Works as a premium apprentice did not commence until after Sussex had gone to her rest, otherwise I might have had an intimate acquaintance with this most interesting engine, but I well remember conversations I had with some of the men who had worked on the fluid pressure gear, etc., particularly I recall a chat with the man—a very old hand—who had the task of boring the tiny hole right through, or nearly so, the crank axle, and he spoke of his fears lest the drill employed should break off well inside the shaft, and the difficulty of extracting the broken piece.
In the Railway Magazine for October, 1908, page 321, there appears an illustration of a pair of single driving wheels fitted up complete on crank with the Joy gear we are now considering, and although underneath the picture there is a bracketed suggestion that the wheels belong to a "Midland" engine, yet to anyone familiar with former "Brighton" practice, there is no doubt that the illustration is that of Sussex's driving wheels. Furthermore, the site would easily be recognised by anyone familiar with the Brighton Works as they were at the time that Sussex was being fitted up with the experimental gear.
Reverting to my request for a view of the front end of the old 2-2-2 tank No. 14 of 1852, apparently none of my fellow readers have been able to help in this matter with a drawing, may I now ask if any gentleman could kindly give a description of the general practice of Craven at that period (the early  1850s), as I have an idea that the early Cravens had flat smoke box doors, two doors to each smoke box and meeting together and fastened on vertical centre line of boiler. Also what shape were the smoke box sides at the bottom, of those days? did they curve inwards and was the front plate of smoke box spread out at the sides of bottom of smoke box, as was the practice in later days. If any reader can help in these matters I shall be very thankful.
I was interested to read that the Southern are to build some 0-8-0 tanks, I do not know for which section these are intended, but it is interesting to call to mind that R.J. Billinton had two 0-8-0 tanks on order at the Brighton Works towards the end of 1904. In most respects they would have been identical with his last series of 4 ft. 6 in. radial tanks (now known as the E.6 class), but with a coupled wheel in place of the trailing radial of the E.6 class, but after the decease of Billinton in November, 1904, the order for the eight-coupled arrangement was cancelled, and the engines left the works in 1905 as 0-6-2 tanks of the E.6 class. Before closing may I advise all interested in the old Sussex to read also the Railway Magazine article appearing in the December, 1908, issue, where extracts are given from the diaries of the David Joy, and his own comments on Sussex.See letter from F.W. Holliday on p. 336-7.

Expansion. M.M. Niven.
We have recently been informed that a new valve and gear is being experimented with: the Caprotti poppet valves, operated by means of a gear-box. The writer has seen diagrams of this gear cutting off at 3 per cent. of the stroke, taken off an Italian State Ry. engine, and as our knowledge and experience goes, we know that 15 per cent. is the minimum possible cut-off with other gears hitherto. With superheating and other improvements, and with the successful performance of the compound engines of the Midland Ry. (now L.M.S.), a gear such as Lentz or Caprotti will no doubt become universal in the future.
D.K. Clark was the first experimental worker who seriously took up expansive working. He demonstrated that a portion of the steam admitted to the cylinders at each stroke was condensed, and that it was partly re-evaporated at the end of the expansion, and that by this destroying process, the efforts at economy by cutting off early and expanding were baffled, insomuch that it was impossible with economy to cut off earlier than one third of the stroke."
Above words were quoted by A. Mallet in 1877 before the Societe des Ingenieurs Civils. D.K. Clark read a paper in 1852 before the Institution of Civil Engineers on this subject. Every responsible engineer knows that the saturated steam locomotive was sluggish and did not pull well when cutting-off behind the 25 per cent. grade, nor did the beat tell that this was the case. The writer has a very sensitive ear and can by it tell if an engine is being driven scientifically. The old slide valve served its day well when steam was lower in pressure, but piston valves are often unsatisfactory, and troublesome, due to carbonisation of segments and rings, and we must look to such as the Caprotti or similarly con- trolled valves, as by such the steam locomotive has a long and useful career before it. What was impossible to D.K. Clark will become a fact to-day.

Reviews. 101

La locomotive: description raissonee de ses organes, U. Lamalle and F. Legein. Brussels: Ramlot Freres et Soeur. London: The Locomotive Publishing Co., Ltd.
The present volume represents the third edition of a most practical treatise on the locomotive, more particularly as it exists on the Belgian Rys., the joint authors being attached to the administration of the Societe Nationale des Chemins de Fer Belges. It is not pretended to be a historical work, and few pages are devoted to this, but a full description, accompanied with clear drawings, is given to all the details of the modern locomotive—its boiler, mechanism, framing and fittings. Although other Continental and even British practice is at times mentioned, it is presumably only in connection with adoption on the Belgian types, for, under Air Brakes, we find no description of the Knorr apparatus, although vehicles fitted with this brake must at times circulate over the Belgian lines. Under Distributeurs (slide valves), etc., we would have expected to find more mention—and, perhaps, illustrations—of poppet valves, such as the Caprotti, Lentz., etc., but they are simply mentioned as being under trial, no comment being made. Similarly, the volume is silent on many of the more recent developments of superheating, high-pressure boilers, etc. They are probably reserved for future editions to be published, when such devices have found more general adoption on the locomotives of the Belgian Rys. The book is another interesting addition to practical treatises on modern locomotive engineering, and will, we feel sure, find many readers this side of the Channel.

[English Electric Journal]. 102
Special Traction Number of the English Electric Journal contains profusely illustrated articles on the electric traction works of the English Electric Company; electrification of the lines of the Port of Montreal; electric traction equipments in Japan; "under-car" control equipments for 1,500-volt motor coaches, etc.

Holiday Haunts. Published by the Superintendent of the Line, Great Western Ry., Paddington Station. 102
The 1927 edition of this G.W.R. publication celebrates its twenty-first birthday. To mark the occasion it has been again enlarged, and contains a mass of information for the tourist, holiday-maker, and for the general public. When the first edition appeared in May, 1906, it comprised 334 pages, the present issue contains 1,000 pages with over 400 selected illustrations of places of beauty and interest on the "Holiday Line." A special staff attached to the Publicity Department at Paddington has been engaged since May last in collecting pictures and information to be used, and incidentally it may be mentioned that no less than 219 tons of paper were required for the 175,000 copies printed. To ensure publication of the guide on 1 March, the procedure at the printing works is arranged to a pre-arranged time schedule. The guide circulates not only all over Great Britain and Ireland, but copies are placed on all ocean liners, and sent to all the principal clubs throughout the British Dominions.

L. & N.E.R. signalling experiments. 102
E.F. Fleet, of York, signal engineer of the North-Eastern area of the L. & N.E.R., and recently elected President of the Institute of Railway Signal Engineers, has been responsible. for two experiments in safer signalling practice on the L. & N.E.R. One of these is a system of intermittent or transient track circuit which has been installed at Castleford, in place of token instruments on a section of single line. The continuous current track circuit is dispensed with, but before a train can be signalled in either direction the transient impulse current must have swept the track from both ends, first by the signalman offering the train, and then by the signalman accepting the train.
The other development is the introduction of the three-colour daylight system of signalling between Croft and Darlington on the main line. This installation will result in closing down three signal boxes, thus effecting economy in working. It is proposed to adopt approach lighting. In the normal position, no light is exhibited, but when a train approaches within 1,200 or 1,800 yards, the colour light signal will be illuminated by the track circuit control, and the red, yellow or green light will show the length of clear headway in advance of the train. When the train has passed it maintains a red light showing in the signal until it has covered 1,600 to 2,000 yards ahead.

Battery locomotives for power stations and works.  102
The D.P Battery Co. Ltd., of Bakewell, Derbyshire, and 11 Victoria Street, Westminster, have issued a well- produced booklet dealing with the services given by Battery locomotives at the super power station of the Electricity Department of the Glasgow Corporation in handling the coal supplies, and the removal of ashes. A photo reproduction shows this locomotive handling a load of 150 tons. During eighteen months the tonnage hauled totalled 758,730, with a total battery discharge of 37,798 units. This locomotive is fitted with a Kathanode battery of 108 cells, capacity 384 ampere hours at the 5-hour rate of discharge. The battery has been in constant use for three years, and still gives full capacity. It is seldom necessary to charge it more than once in 24 hours.
The other locomotive illustrated is of the combined trolley and battery type at the Peterborough works of Baker, Perkins, Ltd. This locomotive is operated both in the works and outside, the length of track being over two miles. Only a short section is equipped with overhead line, and when in that area the trolley is brought into use. A special feature of the equipment is the arrangement by which the battery can be charged whilst shunting is in progress. Apart from propelling the locomotive, the battery is used for various auxiliary purposes, such as lighting, driving electric cranes and motors. The maintenance costs of the Kathanode batteries have been found to be extremely low, and after four years' service are still in excellent working order.

The Superheater Company. 102
17, East 42nd Street, New York City,: Spanish edition of their instruction book, covering the installation, operation, maintenance, and repairs of their locomotive superheaters. It is a translation of the American edition and has been prepared for distribution in Spanish speaking countries. The instructions given apply generally to the Elesco type of superheater, irrespective of whether made by the American Co., or by its associations in England, France or Germany. Copies jwill be sent wherever they can be used advantageously.

Hadfields Ltd., Hecla Works, Sheffield,  102
Leaflets illustrating examples of railway trackwork constructed of Hadfield's patent manganese steel rolled rails. In addition to the British railways using Hadfields patent Era manganese steel for their permanent way, it is also used on many railways in other countries, including Belgium, Holland, Spain, Japan, South America, South Africa, Australia and Canada. By reason of its extreme hardness and toughness, this material has successfully met the demand for track work that is subject to the severe wear and tear of modern traffic. The hundreds of crossings in Era steel on the London Tube Rys. show scarcely any signs of wear, although many have had more than 200 million tons of traffic over them. Another circular describes Hadfields Hadura steel shear blades for cutting hot blooms, bars, billets, etc.

Westinghouse Brake & Saxby Signal Co., Ltd.,  102
Order from Metropolitan Vickers Electrical Co., Ltd., for eighty-two electrically driven air compressors, type C.M.38, for the supply of compressed air to the brake equipments on electric locomotives of the Great Indian Peninsula Ry. Saxby & Farmer (India) Ltd., of Calcutta, who are associated with The Westinghouse Brake & Saxby Signal Co., Ltd., of London and Chippenham, have been given the con- tract for the supply of Westinghouse semi-automatic daylight signals, and A.C. track circuiting over approximately three miles of double track, between Churchgate and Grant Road, on the Bombay, Baroda & Central India Ry., the control apparatus for these signals being located in four cabins

New railway bridge at Nottingham. 102
The bridge at Trent Lane, on the L. & N.E. Ry. line from Nottingham to Grantham, is to be replaced by a new structure. A start has been made with the erection of the iron and wood staging which is to carry temporarily the new bridge, in preparation for placing it in position. The staging will be alongside the present bridge, and the exchange will be effected in one day, the old bridge being removed in sections, and the new bridge being rolled in its entirety on the existing stone abutments. These rise to a height of about fifteen feet above the L.M. & S. line from Nottingham to Newark, and the roadway. The task will not be an easy one, for the new bridge, which is designed to take the heaviest locomotives likely to be run in the future, will weigh 580 tons. It is being constructed in three spans by John Butler & Co. Ltd., Stanningley, Leeds, who have erected the centre span in their works, and this will shortly be dispatched to Nottingham. Special wagons will be required to take the main steel girders, which are 114 ft. in length and about 9 ft 6 in. in depth, and weigh 45 tons each. They are about the longest continuous girders that the firm have made. The bridge, which has a total length of approximately 200 feet, is to carry a double track.

No. 416 (14 April 1927)

Plymouth, Birkenhead and the North Express Great Western Ry. 103 + plate (missing)
Photograph by B. Whicher of 10.30 ex-Plymouth Millbay leaving Teignmouth at 11.44: train formed of very mixed rolling stock behind Saint class 4-6-0 No. 2977 Robertson

Locomotives for working boat specials, Port of London Authority. 103-4. 2 illustrations
Outside cylinder 0-6-0T Nos. 69 and 70 built by R. & W. Hawthorn, Leslie & Co.  in 1922 and working at Tilbury Dock. Livery dark blue

London, Midland & Scottish Ry. (L. & N.W. Section). 104
Nos. 13041-4 were latest 2-6-0 mixed traffic engines ex-Crewe to be put into service on this section. Two additional class 4 0-6-0s had also been delivered and put into traffic: No. 4347 ex Kerr Stuart & Co., and No. 4361 ex A. Barclay & Sons. It is understood that a further twenty of the same type were to be built at Crewe.
Class B compound, No. 826, and class D simple, No. 1815, had been converted to class G1 (superheater) and renumbered 8905 and 9044 respectively. The former engine had also been provided with a standard Belpaire boiler. No. 2352, a 0-6-2 side tank coal engine (now No. 7835), had been adapted for working motor trains.
The 4-4-0 Webb compound, No. 1944 Victoria and Albert had been withdrawn for scrapping, thus leaving only one other of the type in service, viz., No. 1974 Howe which latter was fitted experimentally with a superheater. Other withdrawals of note were: 6 ft. 6 in. straight link class No. 1678 Airey and 4 ft. 6 in. passenger tanks, Nos s. 820 and 1358.

Compound express locomotive German Railways (Baden). 104-6. illustration, diagram (side elevation)
Four-cylinder compound 4-6-2

Rebuilt locomotive: Norwegian State Railways. 107-8.  2 illustrations, 2 diagrams (side elevations)
0-10-0 of Ofoten Railway rebuilt as 2-10-0

Narrow gauge tender locomotive, Central Provinces Ry., India. 108-9. illustration, diagram (side & front elevations)
2ft 6in gauge 2-8-2 built Nasmyth Wilson & Co. uundeer supervision of Rendel Palmer & Tritton

The Panama Railway.  110-12. 5 illustrations, map
Colonel M.L. Walker was President of the Panama Railway in 1927, C.L. McIlvaine was Executive Secretary of the Panama Canal Zone. The locomotives were mainly supplied by Baldwin

Ahrons, E.L.. Early Great Western standard gauge locomotives. 113-15. 4 illustrations.
2-2-2 Sir Alexander class including rebuildings; including No. 1122 Beaconsfield. Also  0-6-0ST No. 1227

Household, H.W.G. Some notes on the Eskdale Railway. 115-117. 4 illustrations.
Mainly on handling stone traffic: most of the illustrations relate to this.

Royal Train for the Duke & Duchess of York, New Zealand Government Railways. 119; 118. 4 illustrations.
Includes photograph of four New Zealand Government Railways officials: Ewart, Chief Clerk, CME's office; J.F. Mackley, Chief Locomotive Engineer, North Island; F.C. Widdop, Chief Engineer and G.S. Lynde Chief Mechanical Engineer

The Alexandra Newport & South Wales Docks and Railway and its locomotives. 120-1. 3 illustrations
(Continued from page 80)_
The earliest engines of the Alexandra Dock Co. were purchased from the L. & N.W. Ry. and numbered as follows:-
L.N.\\'. No. Date . at time of Makers. Date pur- disposal. Built. chased.

ADR No.

Name

LNWR No.

Maker

Date built

Date purchased

1

Sir George Elliot

1805

R. Stephenson & Co.

1848

1875

2

Lord Tredegar

1807

R. Stephenson & Co.

1848

1875

3

J. R. Maclean

1852

R. & W. Hawthorn

1848

1876

4

Rhondda

1850

R. & W. Hawthorn

1849

1877

5

J. C. Parkinson

1891

Worcester Eng. Co

1868

1879

6

Lady Tredegar

1837

Sharp Stewart & Co.

1857

1880

7

Pontypridd

1848

Sharp Bros.

1848

1880

Of the above, all except No. 5 were originally tender engines which had been converted at Crewe works to saddle tanks between 1865 and 1870. The cylinders were 18 in. by 24 in., and the coupled wheels 5 ft. in diameter. Nos. I, 2, 3, 4 and 6 were all practically similar in appearance, and Fig. 1, which shows No. 2 Lord Tredegar, suffices to illustrate this class as fitted with the A.D. Company's standard chimney and cab of the period.
Nos. 1 and 2 were built by R. Stephenson & Co. (Nos. 624 and 625) in 1848 as Nos. 216 and 220 of the Southern Division of the L. & N.W. Ry..; No. 216 was renumbered 816 in 1862, and 1156 in 1864. It was rebuilt as a saddle tank in 1865, and finally renumbered 1805 in 1872. No. 220 became No. 820 in 1862, and No. 1199 in 1864. It was reconstructed as a saddle tank two years later, and carried the number 1807 from 1872.
No. 3, ordered for the Huddersfield and Manchester Ry., was delivered to the North Eastern Division, L.&N.W. Ry., but transferred to the Southern Division as No. 87. This engine was built by R. & W. Hawthorn (works No. 558) in 1847. Its number was changed to 687 in 1862 and to 1215 in 1863. It emerged from Crewe Works as a saddle tank in 1866, and finally became No. 1852 in 1872.
No. 4 was also a Hawthorn engine (works No. 709), built in 1849. It was at first No. 244 of the Southern Division, but became No. 844 in 1862; No. 1213 in 1863, and No. 1850 in 1872. It had been converted to a saddle tank in 1869.
No. 6, built by Sharp Bros. & Co.( No. 1011) in 1857, received the Southern Division No. 276, and was rebuilt as a saddle tank in 1870. Its number was changed to 1152 in 1871, and again to 1837 in 1874. This engine is recorded as having been sold to the Ebbw Vale Steel & Iron Co., but it very soon passed nto the hands of the Alexandra Dock Co.
These engines were displaced from 1898 onwards, but at least one was employed at the docks for some years later to supply steam to an air-compressing plant. Two were sold to the South Hetton Colliery Co., and as Nos. 8 and 9 are still at work, the former having been rebuilt as a side tank engine. No. 9, formerly No. 1, Sir George Elliot, of the Alexandra Dock Co., now carries the name Sir George. It was rebuilt in 1911; the leading coupled wheel centres being shortened 18 in., whilst a new saddle tank has been provided, this being taken from an engine now broken up.
Engine No. 5 J.C. Parkinson, was a double- framed 0-6-0 side tank, with a history of more than usual interest. Originally one of five engines (Nos. 34 to 38) built by the Worcester Engine Co. in 1868 for working the severely graded St. John's Wood section of the Metropolitan Ry. (varying from 1 in 27 to 1 in 80), it was found in practice to be too large to do the work economically. The five engines were therefore put aside for some years; one being sold in 1873 to the Sirhowy Ry. (on which line it was numbered 9) and the remainder to the Taff Vale Ry. When the Sirhowy Ry. was absorbed by the L. & N.W. Ry. in 1876, No. 9 was taken into the latter Company's stock as No. 2241, but very soon became No. 1891. It was sold in 1879 to the Alexandra Dock Co., who gave it the number 5, and the name, J.C. Parkinson. The original dimensions were-cylinders 20 in. dia., by 24 in. stroke, inclined at 1 in 8½. The valves were on top of the cylinders, and were actuated by rocking shafts and Allan's straight link motion. Diameter of wheels, 4 ft.; boiler, 11 ft. long and 4 ft. 3 in. in diameter. Heating surface, 1,132 ft2 Working pressure, 130 lb. Grate area, 22¼ sq. ft. Wheelbase, 14 ft. Weight, 45 tons.
Whilst in possession of the Alexandra Dock Co. this engine was rebuilt twice and completed fifty-eight years of service with five different railways. In 1900, it was renumbered 7, and again in 1905 as 26. Fig. 2 shows the appearance of this engine after its first rebuilding in 1891, to the following dimensions :-Cylinders, 18 in. by 24 in.; diameter of wheels, 4 ft.; boiler, 12 ft. long and 4 ft. 5 in. in dia.; heating surface of tubes, 975 ft2, and of firebox, 95 ft2 Total, 1,070 ft2 Working pressure,. 150 lb.; total weight, 46 tons 14 cwt. In 1921 the engine was again rebuilt by Hawthorn, Leslie & Co. As built the firing space on the footplate was rather small and in consequence the frames have been lengthened at the trailing end to accommodate a pair of radial carrying wheels, advantage of this being taken to increase the bunker capacity at the same time, and a new boiler with pop safety valves was also provided. Fig. 3 shows this, the oldest engine of the Alexandra Dock Co., at its amalgamation with the Great Western Ry. by whom it was numbered 663. The latest dimensions were:- Cylinders, 18 in. by 24 in. stroke; coupled wheels, 4 ft. dia.; radial wheels 3 ft. dia. Bunker, 145 cubic ft. capacity flush with coping. New boiler of the Belpaire type with steel inner firebox and provided with magnesia lagging; minimum, internal diameter of boiler, 4 ft. 1£ in.; length between tube-plates, 11 ft. 7 i in.; heating surface, 184 tubes of 1£ in. dia., 979 ft2; firebox, 95 ft2, total, 1,074 ft2 Grate area, 19.;3 ft2 Working pressure, 180 lb. per sq. in. relieved by Ross pop safety valves. It was withdrawn from service in 1926.

Blake Boiler, Wagon and Engineering Co., Ltd., Darlington. 121
The business of the Blake Boiler, Wagon and Engineering Co., Ltd., Darlington, has recently been taken over by the Metropolitan Railway Carriage, Wagon and Finance Co., Ltd., Birmingham. This follows upon the approval by the share- holders of the Darlington firm of the terms offered by the Metropolitan Company for the purchase of thelworks. The work at present in hand will be completed in about a month, when it is understood the business will be transferred to Birmingham. 'Fhe Metropolitan Carriage Company have negotiations in hand respecting the utilisation of the works, at Darlington.

Inness, R.H. (unattributed): Locomotive history of the Stockton & Darlington Railway, 1825-1876. 122-4.
Fig. 39 0-6-0 Peel and Fig. 40 as rebuilt as NER No. 1072.

C.W. Brett. Electric welding in repairs to locomotives and rolling stock. 125. 2 illustrations

Gustav Reder. Locomotives of the Madrid, Zaragoza and Alicante Railway. 126-7. illustration

Internal combustion shunting locomotive, Great Western Ry. 128-9. 3 illustrations
Supplied Motor Rail & Tram Car of Bedford.

Institution of Civil Engineers. 130
At a meeting of the Yorkshire Association of the above, held at Leeds on the 31 March M. Noel Ridley, member, contributed a paper on the Ridley combined frictionless road and rail bogie for broad and narrow gauge railways. The author advocated the use of vehicles for freight which would be transferable from road to rail and vice versa—the carrying wheels mounted in a pivotted bogie frame having wide flat surfaces suitable for running on the roads, whilst they would be guided, when on the rails, by small guiding wheels mounted on adjustable framing to be raised or lowered at will. Some very convincing figures were given connected with the cost of rail and road transport and the author has evidently prepared schemes worthy of careful consideration in these times of severe competition.

Centenary of the first French railway. 130
To celebrate the centenary of the first railway in France, the Paris, Lyons & Mediterranean Ry. Co. was placing a commemorative tablet in the station of Saint Etienne-Chateaucreux. The line, which was opened in 1827, connected Saint Etienne with Andrezieux, in the Department of the Loire. It was used for coal traffic only, from Saint Etienne to the Loire a distance of just over twelve miles. It was of standard gauge and single track. Horse traction was used until 1844, when steam engines were introduced, although steam power had been used on the Saint Etienne-Lyons Ry, much earlier (see March issue). Very little of the original line now remained, only one bndge, a platform, and the station at La Querilliere.

East Indian Ry. 130
A model has been prepared of a new Ill. class tourist car, suitable for wedding parties, etc. Accommodation to be provided for forty-two persons. One Ill. class and one" Intermediate" class car were to be built.

Southern Railway. 130
Whilst the Southern Railway was spending £100,000 in convertmg air brake to vacuum on the Brighton section the French Railways were proposing to spend £3,000,000 on fitting air brakes to goods stock.

Export orders. 130
Hunslet Engine Co., Ltd., received an order for six 4-6-0 tender engines for the Ceylon Government Rys. (5 ft. 6 m. gauge) from the Crown Agents for the Colonies. W.G. Bagnall, Ltd., were to build four 2-6-2 tank engines for the Burma Rys. (metre gauge) and four of the same type and gauge for the Bengal North Western Ry. Six Garratt locomotives were being built by Beyer, Peacock and Co. for the San Paulo Ry. of Brazil. This firm had also booked orders for three Garratt locomotives for the Burma Rys., 2-8-0+0-8-2 type, and three 2-8-2 tender locomotives for the Chilian Northern Ry., which is operated by the Autofagasta and Bolivia Ry. Co. The Mapperley Colliery Co. had ordered a four-wheeled shunting engine from Beyer, Peacock and Co.

Railway Club. 130
Debate to be held at the Club headquarters, on Monday, 25 Apnl, That the Groupmg of the Railways has not been beneficial. W.A. Willox, A.M.LC.E., will act as proposer and B.M. Bazley as opposer.

British locomotive builders, past and present. 130-2.
List with brief notes: is this what Lowe was based upon? Continued page 163. See also letter from Méchanicien
Since the earliest days of railways there have existed a number of private firms engaged in the manufacture and supply of locomotive engines, and the industry-as distinct from that carried on at the railway companies' own works-has always been in a very flourishing state. Previously to 1870, or thereabouts, it was the general custom for railways to purchase locomotives from an outside source to a much greater extent than the practice obtains to-day. Beyond specifying the type of engine required and laying down certain conditions, the companies left details very much in the hands of the manufacturers, and such an engine bore (apart from the maker's name-plate) the distinct stamp of its origin. Thus it became usual to describe it as a "Sharp," a "Stephenson," or a "Beyer, Peacock," rather than that of the railway to which the engine belonged. Whilst many private firms known to past generations are still going concerns, a number, equally famous, have long ceased to exist, but others have sprung up to take the place of the latter, and to-day competition is severe, not only for supplying home railways but also the Colonial and foreign markets. In the home trade, private makers compete not only with each other, but with the larger railways, the majority of which are normally in the position of being able to build all they require in their own shops. In addition to the railway su~' there is always a demand for locomotives from collieries, ironworks, contractors, and other industrial under- takings, and the business has now reached to con- siderable proportions.
Appended it a list, alphabetically arranged, of firms, past and present. Many are very little known, and some have built only one or two locomotives, but. so far as we know, all are included. Where particulars are available, extended reference is made to individual firms. N.B.--An asterisk (*) denotes either that the firm is defunct, or no longer engages in the locomotive building trade.
*Abbott & Co. Built for the York & North Midland Ry.
*W. B. Adarns, Fairfield Works, Bow, London. Specialised in "light" locomotives.
*D. Adamson & Co., Dukinfield. Tank engines.
*Airdrie Iron Co., Airdrie. Industrial locomotives.
Arrnstrong, Whitworth & Co., Scotswood Works. Built about fifty engines between 1847 and 1864, and resumed construction in 1919.
Aveling & Porter, Rochester. Specialise in road rollers, but have made a few similar engines adapted for use on the railway.
Avonside Engine Co., Bristol. Originally established under the name of Henry Stothert & Co. (which see). Some 2,000 engines have been built to date.
W. G. Bagnall Ltd., Castle Engine Works, Stafford. Out- put, over 2,000 engines. Baguley (Engineers) Ltd., Burton-on-Trent. Narrow gauge locomotives.
*Archibald Baird & Co., Hamilton.
*J. Banks. Built for the Birmingham and Gloucester and Liverpool and Manchester Rys,
Andrew Barclay, Sons & Co., Caledonia Wks., Kilmarnock. Output, over 2,000 locomotives. .
*Barr & McNab, Paisley. Built for the Glasgow, Paisley and Greenock Ry.
*Barr, Morrison & Co., Kilmarnock.
*Barrow & Co. Built for the York & North Midland Ry.
Bassett-Lowke, Northampton. Specialise in 15-in. gauge locomotives for miniature railways.
William Beardmore & Co., Dalmuir. Commenced construction of locomotives in 1919.
Beyer, Peacock & Co., Gorton Foundry, Manchester. Founded in 1854, this firm's output exceeds 6,200 locomotives to date.
*Bingley & Co. Built for the Sheffield & Rotherham Ry.
*Black, Hawthorn & Co., Gateshead. Succeeded J. Coulthard & Son, and built about 1,100 engines between 1864 and 1896. In the latter year the business was sold to Chapman & Furneaux (which see).
*Blair & Co., Stockton. Built for the Londonderry Ry.
*J. G. Bodmer, Manchester. Built for the London and Brighton and South Eastern Rys.
*Isaac Watt Boulton, Ashton-under-Lyne. Built locomo- tives for hiring. See "The Chronicles of Boulton's Siding," which have just been published in book form.
*John Braithwaite & Co., New Road (now Marylebone Road), In partnership with Ericsson built the "Novelty," which took part in the Rainhill trials, 1829. In 1836 became Braithwaite, Milner & Co., and built locomotives for various railways.
British Thomson-Houston Co., Rugby. Builders of electric locomotives.
*Peter Brotherhood, Chippenham. Wound up about 1875.
*Edward Bury, Clarence Foundry, Liverpool. Established 1829. Afterwards Bury, Curtis & Kennedy. Defunct since 1850.
*Butterley Ironworks, Butterley. Built for the Midland Counties Ry..;
*Caird & Co., Greenock. Built for the Glasgow, Paisley and Greenock Ry.
*J. & C. Carrnichael, Dundee. Built two locomotives for the Dundee and N ewtyle Ry.
*Alexander Chaplin & Co., Cranstonhill Engine Works, Glasgow. Specialised in shunting engines having vertical boilers and cylinders.
*Chapman & Furneaux, Gateshead. Acquired the business of Black, Hawthorn & Co. in 1896 and constructed about seventy engines to 1901, when the partnership was dissolved.
*Clyde Locomotive Works, Glasgow. Founded in 1886, this firm had a separate existence of only two years, for in 1888 it was taken over by Sharp, Stewart & Co., who removed thence from Manchester.
*Cochrane, Grove & Co., North Orrnesby, Middlesbrough. Built tank engines with vertical boilers and cylinders.
*John Coulthard & Son, Gateshead. Built about 100 engines from 1835 to 1856, when they failed. The works were subsequently taken over in 1864 by Black, Hawthorn and Co. (which see).
Crompton & Co., Chelmsford. Built most of the electric locomotives of the City & South London Ry., 1897-1901.
*Cross & Co., Sutton Engine Works, St. Helens. Built for the Saint Helens, Anglesea Central, Neath and Brecon and other railways.
*J. Crowley & Co., Kelham Ironworks, Sheffield.
Davey, Paxman & Co. Ltd., Standard Ironworks, Colchester. Built for narrow gauge railways.
*Davies & Metcalfe, Manchester. Built two engines for the Vale of Rheidol Ry. in 1902.
*Davy Bros., Brightside, Sheffield. Built for the Sheffield and Rotherham Ry.
*W. Dean. Built for the Bolton & Leigh Ry.
*Deptford Iron Co. Built for the Hartlepool Docks and Railway.
*De Winton & Co., Carnarvon. Built tank engines with vertical boilers and cylinders, 1870-1876.
*Dick, Kerr & Co., Preston. Narrow gauge locomotives.
*Dodds & Son, Holmes Engine Works, Rotherham. Built about seventy engines between 1850 and 1867, when they failed.
Alfred Dodman, Highgate Works, King's Lynn. Specialise in showmen's and agricultural engines.
Drewry Car Co. Ltd., Burton-on-Trent. Makers of internal combustion locomotives, inspection cars, etc.
D. Drummond & Son, Glasgow Railway Engineering Co., Govan. Built rail motors for the Alexandra Docks and Railway.
Dubs & Co., Glasgow Locomotive Works. Established in 1864 by Henry Dübs, formerly works manager of Neilson and Co. Amalgamated in 1903 with Sharp, Stewart and Co., and N eilson, Reid and Co., under the title of the North British Locomotive Co. (which see).
*Thos. Edington & Sons, Glasgow. Built for the Glasgow, Paisley, Kilmarnock and Ayr Ry.
Electric Construction Co., Wolverhampton. Built an electric locomotive for the City & South London Ry. in 1898.
*George England & Co., Hatcham Ironworks, London. Established in 1839 and built about 250 engines, including the first of the pioneer narrow gauge (Festiniog) railway. Firm wound up in September, 1869, and taken over by the Fairlie Engine and Steam Carriage Co. (which see).
*W. Fairbairn & Sons, Canal St. Works, Manchester. Founded in 1817 and then known as Fairbairn & Lit1ie. Output approximately 400 engines between 1839 and 1862.
*Fairlie Engine and Steam Carriage Co. Acquired the business of George England & Co. in September, 1869. Specialised in double bogie locomotives.
*Fawcett, Preston & Co. Built for the East Lancashire Ry.
*Fenton, Murray & Jackson, Leeds. Founded by Matthew Murray, who constructed Blenkinsopp's rack rail engine in 1812. Became Fenton, Murray & Jackson in 1830. Works closed about 1843.
*George Forrester & Co., Vauxhall Foundry, Liverpool. Built for several early railways.
*Fossick & Hackworth, Stockton. Afterwards Fossick and Blair. Built about 120 engines.
*Foster, Rastrick & Co., Stourbridge. Built the Stourbridge Lion, the first engine for America (1828), and the Agenoria, for the Shutt End Ry, (1829).
John Fowler & Co. (Leeds) Ltd., Engineers, Leeds. Built a large number of locomotives for various railways. Specialise in narrow gauge steam and internal combustion locomotives, also traction engines, etc. Output, over 16,000 machines of all classes.
*Fox, Walker & Co., Bristol. Existed from 1862 to 1880, when the firm was taken over by Peckett & Sons (which see). During the period named about 350 engines were built. .
*Galloway, Borrnan & Co., Manchester. Built an engine for the Liverpool & Manchester Ry.
*Garforth & Co., Manchester. Built for the M.S. & L. Ry.
*Gilkes, Wilson & Co., Teeside Iron and Engine.; Co., Middlesbrough. Established 1844; afterwards Hopkins, Gilkes & Co. Built about 350 engines before being wound up in 1880.
*Grange Iron Co., Durham. Built a few engines for collieries and ironworks.
*Grant, Ritchie & Co., Townholme Engine Works, Kilmarnock.
*W. Grant & Co., Belfast. Built for the Cavehill and Whitwell Tramway, 1886-7.
*Thomas Green & Son, Smithfield Ironworks, Leeds. Have built tank engines and tramway engines. .
*Grendon & Mackay, Drogheda Ironworks, Drogheda. Built for Irish Rys.
*Timothy Hackworth, Soho Works, Shildon. Premises are now used by North Eastern Ry. as gasworks.
*John Hague, London. Built ior the Stockton & Darlington Railway.
*Haigh Foundry, Wigan. Established 1810 and built 114 engines from 1835 to 1856, when the works closed.
*Hartlepool Iron Co. Built for the Hartlepool Jn. Docks and Rv.
*John Harris, Albert Hill Foundry, Darlington. Built some twenty engines previously to 1870 and then taken over by C. E. Lister.
*Hawkes & Thompson (afterwarrls Thompson Bros.), Wylam-on-Tyne. Built for the Newcastle & Carlisle Ry.
R. & W. Hawthorn, Leslie & Co., Forth Banks Works, Newcastle. Established in 1817 as R. & W. Hawthorn and Co. Amalgamated with A Leslie & Co. (Shipbuilders), of Hebburn, in 1886, and took the present title. Over 3,000 engines have been built to date.
*Hawthorns, Leith. Was an undertaking separate from the last named. The works were mostly devoted to shipbuilding, but locomotives were also built from about 1846 to 1866.
*Headley Bros., Eagle Foundry, Cambridge. Afterwards Headley & Edwards. Built a locomotive for the Eastern Counties Ry. .
*Head, Wrightson & Co., Thornaby-on-Tees. Built tank engines with vertical boilers, 1870-1880.
*Heron & Wilkinson.
*Benjamin Hick & Son. Started Soho Ironworks Bolton in 1832, and constructed locomotives from 1837' to 1855; then became Hick, Hargreaves & Co., and ceased building locomotives.
*Hopper, Britannia Foundry, Fencehouses. Industrial locomotives.
*A. Horlock, Northfleet Ironworks, Kent. Built for the Dinorwic Slate Quarries.
*Horseley Iron Co., Tipton, Staffs. Built for the St. Helens Ry.
R. Hudson Ltd., Gildersome Foundry, Leeds.
Hudswell & Clarke, Railway Foundry, Leeds. Afterwards Hudswell, Clarke & Rodgers, and now Hudswell, Clarke and Co. Established in 1860, this firm has built about 1,300 engines to date.
*Henry Hughes & Co., Falcon Works, Loughborough. This firm became known as the Falcon Engine Co. in 1880, and took its present title of the Brush Electrical Engineering Co. in 1899. Built tank and tender engines and also tramway engines. (To be continued).

The manufacture, heat treatment, and testing of locomotive axles. 132-3. 4 illustrations (micrographs)
The final stage in the manufacture of an axle is its testing. The common tests are the tupping, the tenslle and the bend tests. The tupping test is sufficiently well known to need little further comment. The fact that the number of blows, the height of the blows, and the amount of bend so produced all vary in different specifications suggests that there is some variation of opinion as to what is actually required. Before an axle will bend under such a test it has to be stressed beyond the yield point of the material. To some extent, therefore, an axle with a high yield point will not give as much bend as will an axle with a low yield point. It has been said that an oil-quenched and tempered axle is better than a normalised one chiefly for the reason that its yield to break ratio is superior. This suggests that the tupping test is not an entirely happy one, but the consideration as to whether an axle is better which will bend permanently rather than bend and spring back is one which is the subject of considerable controversy and difference of opinion. In the writer's opinion, a test which places inferiority on a part with a high-to-break ratio is unfair from this particular point of view. Considerable trouble is oft-times caused by the breaking of an axle, which appears to be entirely sound and gives excellent tensile and other tests, during the tupping test. It is often difficult to assign a reason for the failure, but it is suggested that in the very great majority of cases the cause of the trouble can be ascertained.

Recent accidents. 134-5.

No. 417 (14 May 1927)

London, Midland & Scottish Railway 10 a.m. Scotch Express near Oxenholme. 137 + sepia photographic plate
Hauled by Hughes 4-cylinder 4-6-0

Superheater goods locomotives—London, Midland & Scottish Railway. 137-8. illustration.
On of 25 built by Andrew Barclay: No. 4357 illustrated

4-8-2+2-8-4 Garratt locomotive. Benguella Railway. 138-9. illustration, diagram (side elevation)
One of six built by Beyer Peacock & Co.

Marc Seguin's tubular boiler. 141

Recent narrow gauge tank locomotives. 142-3. 3 illustrations.
2ft 8in gauge 0-4-2ST supplied by Peckett for Dorset china clay line (very low boiler); 3ft gauge 0-4-0 Jean, and 2ft 6in 0-4-0 Cranmore for Australian gas works.

E.C. Poultney. A high pressure compouind locomotive. 144-7. illustration, 3 diagrams
4-10-2 built by Baldwin Locomotive Co. and exhibited at the Annual Convention of the American Railroad Association at Atlantic City: No. 60,000

Model of Stephenson's "Killingworth" locomotive. 147-8. illustration
Made by Twining Models Ltd of Northampton for Science Museum. See letter from Robert Young on p. 203

New steam rail auto-car, L. & N.E. Ry.. 149-50. 2 illustrations.
Sentinel Waggon Works Ltd. Includes details of test running in the Whitby area. Livery was imitation teak; seating moquette with red and black pattern on buff background.

New 15 in. gauge 4-8-2 type locomotive. Romney, Hythe & Dymchurch Railway. 150-1. illustration
Davey, Paxman & Co. of Colchester supplied to requirements of Captain J.E.P. Howey for 15 inch gauge line to be named Hercules and Samson: full dimensions tabulated.

The Deli Railway, Sumatra. 151-2. 2 illustrations.
Medan to Deli: 3ft 6in gauge: 2-6-4T illustrated. .

Early Great Western standard gauge engines, Llynvi & Ogmore Ry. supplementary notes. 156-7. illus., diagr.
0-6-0ST supplied by Black Hawthorn.

Obituary: Harold L. Hopwood. 157.
Died 23 April 1927 aged 46. Superintendent of Line for Southern Area, LNER. Joined GNR 13 January 1897. Published in Rly Mag. Founder member of Railway Club.

Special tool steels. 157-8. illustration

The Model Railway Club Exhibition. 158

Brewer, F.W. Modern locomotive superheating on the Great Western Railway. 161-2.

British locomotive builders, past and present. 163-4.
Continued from page 130. List with brief notes. In continuation of the article which appeared last month, the following list gives the remaining names of British firms, past and present, engaged in the locomotive building industry.
Honeywill Bros., Ashford, Kent. Petrol and narrow gauge locomotives.
S. & F. Howard Ltd., Bedford. Petrol and oil locomotives for contractors, etc.
Hunslet Engine Co., Leeds. Have built over 1,000 engines since they were established in 1864.
T. H. Hunt & Co., Bournemouth. Built a locomotive for the Eskdale Ry.
*lnce Foundry, Wigan. Built for the South Devon Ry.
*Johnson & McNab. Built for the Garnkirk & Glasgow Ry.
*J. & G. Joicey & Co., Newcastle. Built tank engines for collieries and ironworks from 1867-1894; in all about 24 locomotives were built, standard and narrow gauge.
*Jones, Turner & Evans, N ewton-le- Willows. Established in 1837. Afterwards (probably in 1843) became Jones, Potts & Co., and later John jones & Co. Output about 340 engines to 1863, when the establishment closed.
J. R. Engineering Co., R.H. & D. Ry. Station, New Rornney, Kent. Build miniature locomotives.
*Kenworthy, Taylor & Co., Barnsley Foundry, Barnsley. Tank locomotives. Kerr, Stuart & Co., California Works, Stoke-on- Trent. Build for various railways at home and abroad. Kilmarnock Engineering Co., Kilmarnock. Tank loco- motives.
*Kinmond, Hutton & Steel, \Vallace Foundry, Dundee. Built for Glasgow & Ayr Ry.
*Kirtley & Co., Warrington. Built for various railways.
*W. & A. Kitching, Hope Town Railway Foundry, Darlington. Originally established in 1790 as an iron foundry. Construction of main line locomotives started in 1833, and ceased in 1860. The firm was afterwards reconstructed and known up to 1885 as C. I' Anson and Co., and about five four-wheeled tank locomotives were built between 1875-1881.; The firm afterwards became A.E. & H. Kitching. The establishment is now known as the Whessoe Foundry.
Kitson & Co., Airedale Foundry, Leeds. Originally known as Tod, Kitson & Laird, and later as Kitson, Thompson and Hewitson, and Kitson & Hewitson. More than 5,000 engines have been built since the firm was founded in 1838.
*Lennox, Lange & Co., Glasgow. Tank locomotives for collieries, ironworks, etc.
*Stephen Lewin, Dorset Foundry, Poole. Built tank engines for contractors, etc.
*Lilleshall Iron Co., Oakengates, Salop. Exhibited at the 1862 Exhibition. Built for the Cambrian and other Railways. Lingford & Gardiner, Bishop Auckland. Build and re- build tank engines for collieries and ironworks.
*Linton, Selby. Built engines for York & North Midland Railway.
*Wm. Lister, Darlington. Built for the Stockton & Darlington and Clarence Rys,
*R B. Longridge & Co., Bedlington Ironworks, Northumberland. Established in 1785, this firm built about 300 engines between 1834 and 1852. Sold to James Spence in 1853 ana closed two years later. The works are now mostly dismantled, but the original drawing office remains and has been converted into two dwelling houses.
Manning, Wardle & Co., Boyne Engine Works, Leeds. Commenced engine building in 1859 and acquired the business of E. B. Wilson & Co. Total output to date exceeds 2,000 engines.
Marshall, Sons & Co. Ltd., Gainsborough.
*Martyn Bros., Chapel side Works, Airdrie. Tank locomotives for collieries, etc.
*Mather, Dixon & Co., North Foundry, Liverpool.
Mather & Platt, Salford. Constructed with Beyer, Peacock & Co. the original electric locomotives of the City & South London Ry. in 1889. Mathews, Bristol. Tram locomotives for Wantage.
*Thomas McCulloch & Sons, Kilmarnock. Tank locomotives for collieries, etc.
*John Melling. Built three locomotives for the Grand Junction Ry.
*Merryweather & Sons, Greenwich. Built engines for tramways and light railways. The firm now specialise, in fire engines and accessories.
*Miller & Co., Vulcan Foundry, Coatbridge. Tank locomotives, mostly narrow gauge locomotives.
*Murd'ock & Aitken, Glasgow. Built for the Glasgow and Garnkirk Ry, N asmyth, Gaskell & Co., Bridgewater Foundry, Patricroft. Established in 1835. Became Tames Nasmyth & Co. about 1850; Patricroft Ironworks about 1856; and Nasrnyth, Wilson & Co. in 1867. Under the latter name the firm still flourishes, and has now turned out approxi- mately 1.300 engines.
*Neasham & Welch Stockton-on-Tees. Built for Stockton and Darlington and local railways.
*Neath Abbey Iron Works, Neath. Established in 1792. Built for the Bodmin & Wadebriclge and other railways. Last locomotives built about 1870. Business taken over by Taylor & Sons Ltd., of Briton Ferry.
Neilson & Co., Glasgow. Established in Hyde Park Street in 1837. Hyde Park Works erected in 1862. This firm, known since 1898 as Neilson, Reid & Co., amalgamated with Sharp, Stewart & Co., and Dübs & Co., in 1903 as the North British Locomotive Co. Ltd. North British Locomotive Co., Glasgow. This is the largest locomotive building company in Europe, the output of the three combined firms now exceeding 23,300 engines.
Peckett & Sons, Atlas Works, Bristol. Acquired in 1880 the business of Fox, Walker & Co. The total output of the two firms since 1862 approximates 1,600 engines.
*Peel, Williams & Peel, Soho Works, Ancoats.
*Pendleton Ironworks, Manchester. Ceased to build engines after 1878. Built about seven locomotives, four-wheeled and six-wheeled tank locomotives for own use at colliery and ironworks owned by the firm of Barninghams.
*Peto, Betts & Brassey, Canada Works, Birkenhead. Built for various railways in this country and Canada.
R. Y. Pickering & Co., Wishaw. Rail motors.
*Ransomes & Rapier, Ipswich. Built the engines for, and equipped, the pioneer railway in China-the Woosung Tramroad-1873-1876.
*G. & ]. Rennie. Established at Stamford Street, Black- friars, in 1824, and removed to Holland Street, Blackfriars, in 1833. One of the earliest firms to be established in London, they built locomotives from 1838 to 1843. In the latter year they became marine engineers.
*George Rennoldson, South Shields. Built an odd locomotive or two possibly for the Stanhope & Tyne Ry, The boiler of one exploded .in the yard whilst undergoing steam trials, November 20, 1837, killing two people.
*Thomas Richardson. Established the Castle Eden Foundry, in 1830, and the Middleton Ironworks, Hartlepool, in 1838, and built engines from 1835 to 1858. The firm is now called Richardson, Furness & Westgarth (marine engineers), and they use the buildings formerly occupied by Gilkes, Wilson & Co. and their successors at Middlesbrough-on-Tees.
*Rothwell S' Co., Union Foundry, Bolton-le-Moors. Established in 1830 and built some 200 engines between then and 1860, when they closed.
Ruston & Proctor, Lincoln. Principally agricultural engineers, but have built a few locomotives. Now known as Ruston & Hornsby, the firm specialise in petrol-driven locomotives.
*St. Rollox Co., Glasgow. Built for the Garnkirk and Glasgow Ry.
*Sara & Co., Plymouth. Built vertical boiler, geared locomotive for the South Devon Ry., also for China Clay Mines.
Savage Bros., King's Lynn. Build locomotives for show- men and scenic railways.
*Scott & Sinclair, Glasgow. Built for various Scottish railways.
Sentinel Waggon Works, Ltd., Shrewsbury. Build chain- driven shunting locomotives.
*Alexander Shanks & Co., Dens Ironworks, Arbroath. Built small locomotives for docks and harbours.
Sharp, Stewart & Co., Atlas Works, Glasgow. Established in 1833 and formerly located at Atlas Works, Manchester. Originally known as Sharp, Roberts & Co., they became Sharp Bros. & Co. in 1843, and Sharp, Stewart & Co. in 1852. Removed to Glasgow in 1888, and took over the business of the Clyde Locomotive Works. Amalgamated in 1903 with Neilson, Reid & Co. and Dubs & Co., under the title of the North British Locomotive Co. (which see).
*Shepherd & Todd, Railway Foundry, Leeds. Commenced engine construction in 1838; became Fenton, Craven and Co. in 1846, and E. B. Wilson & Co. in 1847 (which see).
*C. Todd. Built for the York & Newcastle and York and North Midland Rys.
*Short Bros., Glasgow. Siemens Bros. & Co., Stafford. Built two electric locomotives for the City & South London Ry. in 1891.
*John Smith, Village Foundry, Coven, Wolverhampton. Built tank engines for collieries and ironworks.
*Spence & Co., Dublin. Built locomotives for Guinness's Brewery. . Thomas Spittle, Cambrian Foundry, Newport, Mon. Builds tank engines for contractors, etc.
*Stark & Fulton, Glasgow. Built for Glasgow, Paisley, Kilmarnock & Ayr Ry, Robert Stephenson & Co., Darlington. Established at Forth Street Works, Newcastle, in 1823, under the name of G. & R. Stephenson, Pease & Richardson. The present firm (R. Stephenson s Sr Co.) started numbering their engines in 1832, and have built more than 4,000 between then and now. They removed from Newcastle to Darlington in 1902.
*Stirling & Co., East Foundry and Victoria Foundry, Dundee.
Henry Stothert & Co., Bristol. Became Stothert, Slaughter and Co. in 1840; Slaughter, Griining & Co. in 1856; and the Avonside Engine Co. in 1866 (which see).
*Sutton Engine Works, St. Helens. Afterwards E. Borrows. and Son, Providence Works, St. Helens. (See Cross and Co.)
*H. E. Taylor, Chester. Locomotives for cement works.
*T. M. Tennant & Co., Newington Works, Edinburgh. Built tank engines with vertical boilers.
*Thames Ironworks, Blackwall. Built an electric locomotive for the City & South London Ry. in 1898.
*Thompson & Cole. Built for the Birmingham & Derby J unction and North Midland Rys.
*Thornewill & Warham, Burton-on-Trent. Built tank engines for collieries, and for Bass's Brewery.
*Thwaites Bros., Vulcan Foundry, Bradford; known at one time as Thwaites & Carbutt. Built one locomotive for the South Yorkshire Ry.
*Tredegar Ironworks, Tredegar, Mon. Built engines from 1832 to 1848.
Tulk & Ley, Lowca Works, Parton, Whitehaven. Founded in 1763 by Adam Heslop, and in 1808 passed into Messrs. Millward's hands. Messrs. Tulk & Ley. took over the works in 1830, and in the 1840s commenced locomotive building. In 1857 the firm was taken over by Messrs. Fletcher, Jennings & Co., until 1884, when the works became known as the Lowca Engine Works until 1905, when it became known as the New Lowca Engine Works Co., 250 locomotives having been built by the firm and their predecessors.
*Turner & Ogden, Leeds. Built for the York & North Midland Ry. Vulcan Foundry, Newton-le-Willows. Originally founded in 1832 by Charles Tayleur, and known under the present title since 1847. Total output exceeds 2,000 engines.
*Richard Walker & Bros., Bury, Lancs. Built for the East Lancashire Ry,
*Walker Bros., Pagefield Ironworks, Wigan- Built tram, also tank, locomotives.
*Wilkinson & Co., Holmeshouse Foundry, Wigan. Built for the Giant's Causeway, Portrush and Bush Valley Ry., and various tramways. E. B. Wilson & Co., Railway Foundry, Leeds. Formerly Shepherd & Todd, who commenced building in 1838. Became Fenton, Craven & Co. in 1846, and E. B. Wilson and Co. in 1847. The works were closed in 1858 and taken over, partly by Manning, Wardle & Co. (in 1862) and partly by Hudswell & Clarke (in 1860). 635 engines were built to 1858.
*Robert Wilson, Gateshead. Built one locomotive for the Stockton & Darlington Ry,
*Woolwich Arsenal. Since the war built 50 locomotives as a relief measure.
*Worcester Engine Co., Worcester. Established in 1865 and wound up in September, 1872. Premises occupied partly by Mackenzie & Holland, Railway Signal Engineers, and partly by Heenan & Froude, Engineers .
*Worsdell, Birmingham. Built for the Potteries, Shrewsbury & North Wales Ry,
Yorkshire Engine Co., Meadowhall Works, Sheffield. Established, 1866. Construction to date, about 1,600 locomotives.
N.B.-An asterisk denotes either that the firm is defunct or no longer engages in the locomotive building trade.
Some of the larger industrial companies build occasional engines for their own use at such times as their shops are not fully engaged on other work, and among them may be mentioned: The Coalbrookdale Iron Co.; Dowlais Ironworks; Ebbw Vale Steel, Iron and Coal Co.; Gas Light and Coke Co. (Beckton Works); Haydock Colliery; South Hetton Coal Co.; and Vivian & Sons (Swansea).
As bearing somewhat on this subject, readers are reminded that a list of present Continental locomotive building firms appeared in THE LOCOMOTIVE for June, 1916.
The names given in early railway companies' lists as the firms from whom locomotives were purchased were not necessarily the builders of these. At that time the demand for locomotives exceeded the supply, and as usual in those circumstances, speculators appeared who ordered locomotives which they did not want and could not use, apparently with the sole intention of selling them at a profit to railway companies who wanted them and must have them. Thus the engine Tantalus of the Grand Junction Ry., recorded as being purchased from J. Smith, of Bradford, was built for him by the Haigh Foundry, Wigan, and No. 13 of the North Union Ry., recorded as being purchased from Bourne, Bartley and Co., was built for that firm also by the Haigh Foundry.

Reserved passenger carriages, Nitrate Railways of Chili. 165-6. 4 illustrations, diagram (side elevation & plan).
Supplied by R.Y. Pickering to specification of T. Jefferson, locomotive engineer and inspection by R.W. Hunt & Co.: side corridor coaches with lavatories and furnished with green buffalo hide for smoking or green tapestry for non-smoking compartments

Self-discharging wagons on the German and Swedish State Railways. 166-8. 2 illustrations
Bogie wagons

Correspondence. 168.

British locomotive builders, past and present. Méchanicien. 168
Re pages 130-132 a list of British locomotive builders, past and present. there are several points that are not entirely correct, or which call for further explanation, and I am taking this opportunity to draw your aftention to them.
Blair & Co., Stockton-on-Tees.—This, I think, should be given as follows. Hackworth and Downing, of Shildon, moved to Stockton-on-Tees in the early forties and established works for the building and maintenance of locomotives; the firm afterwards became Fossick & Hackworth, and had the contract for supplying haulage power for the Clarence, Stockton and Hartlepool, also Llanelly Rys., and supplied locomotives for these and other lines. The works manager was Mr. G.T. Blair. The name of the firm was changed to Fossick & Blair at a later date, and eventually the works were entirely taken over by Mr. G.T. Blair. Locomotive building ceased in the late sixties and attention concentrated on marine engine building. The number of locomotives built was about 100.
Cochrane, Grove & Co., North Ormesby Works, Middlesbrough.-Locomotives built by this firm were entirely for use at their own North Ormesby Ironworks.
John Coulthard & Son, Gateshead-on-Tyne.—The figure given, viz., 100 locomotives, seems somewhat high, and these cannot be accounted for, and it seems more probable that the number of this firm's locomotives did not exceed fifty, including rebuilt locomotives which may have received new maker's plates and shop numbers.
D. Drummond & Son, Glasgow Railway Engineering Co., Govan.—This firm also built a number of narrow gauge 0-4-0 tank locomotives with cylinders 6 in. dia. by 9 in. stroke for various gas companies.
Gilkes, Wilson & Co., Teeside Engine Works, Middlesbrough-on-Tees. afterwards Hopkins, Gilkes & Co., and latterly Teeside Iron & Engine Co., closed down 1880. The figure given for the number of locomotives built is not correct, the total number was 134, the last being completed in 1875.
John Harris, Darlington-given as Albert Hill Foundry.— This firm built about twenty tank locomotives between 1863 and 1869 in a portion of the Hopetown Foundry, leased from Messrs. C. E. Lister. One or two of the last locomotives built had the words on the maker's plate, "Albert Hill Foundry, Darlington." The Albert Hill Foundry was not taken over by Lister's but by Messrs. Summerson, makers of railway switches, points, crossings, etc.
Hawthorns', Leith—Locomotive building is given by this firm as between 1846-1866. I would point out that locomotive building continued until the middle eighties, and rebuilding and repairs being carried out until a much later date.
Heron & Wilkinson.—This, I think, should read Horner and Wilkinson, and whether they ever built a locomotive is extremely doubtful. They did, however, build a number of coaches for the early railways in the north of England.
Hartlepool Iron Co.—This firm should be included under the heading of Messrs. Thos. Richardson & Son, Hartlepool Iron Co., Middleton, Hartlepool, established 1838.

Gladstone. Malcolm M. Niven. 168
We have recently heard that the Gladstone of the L.B. & S.C. Ry. has been removed from traffic, and that it is to be placed in the L. & N.E.R. Museum at York until such times as a place can be found for it in South Kensington Science Museum. I was very glad to learn also that the L. & N.E. Ry. Co. were also putting aside one of the Tennant 2-4-0 passenger engines as a memento. Now, I would like the Stephenson Society to try and negotiate with the L.M.S. Ry. to keep one of Mr. James Stirling's 7 ft. It in. coupled engines. These were amongst the earliest 4-4-0 inside cylinder engines in this country, and had a standard of beauty and efficiency seldom eclipsed by any passenger engine of the time. I am safe in saying that it was their wonderful economy in oil and coal which made them so efficient for the time, and as the late Mr. Ahrons gave all particulars it is not necessary for me to recapitulate here. There was great economy in oil in these engines due to the very well designed driving link motion which reduced the frictional resistance in operating the slide-valves to a minimum. These engines could run for a week on two gallons of engine oil, and 21 lb. of tallow, and a fuel consumption of 26 lb. of coal per train mile.

Opening of the new station at Newton Abbot. 168
On Monday, 11 April the new Great Western Railway station at Newton Abbot was opened by Lord Mildmay . of Flete, supported by the chairman, directors, general manager and several officials of the Great Western Ry., as well as many local representatives. It takes the place of the station designed by Brunel, built in 1846, which consisted of three narrow platforms, 400 ft. in length, with an " overall " roof 300 ft. in length. The chief features of the new station are two main island platforms, up and down, each 1,375 ft. long, and coverings for a length of 600 ft.; a separate platform, 320 ft. long, is provided for the Moretonhampstead branch traffic. Other features are :-Commodious refreshment and waiting rooms, electric lifts for the transfer of luggage and parcels, and a footbridge, with wide stairways connecting with the main building. The building is three storeys high; on the ground floor are the booking office, hall, parcels office and cloak-room. The first floor contains a dining-room and tea-room, 66 ft. long and 19 ft. wide, and suitable also for social functions; access to and from the street is given by independent stairways. The offices of the divisional locomotive superintendent are situated on the second floor. At the east end of the station a signal-box, with 206 levers, has been erected, and this is the second largest on the Great Western Ry. system. The townspeople presented three clocks, one of which is placed in the pediment surmounting the building, one in the booking hall and the other is a central controlling clock. After the inauguration ceremony the station was thrown open to public inspection. Much interest was shown in the old South Devon Railway vertical shunting boiler engine  Tiny, as also a hot-air engine, which were on view. The Tiny is believed to be the only 7-ft. gauge locomotive in the world. Built in 1868 by Sara & Co., of Plymouth, it was used by the S.D. Railway for shunting at Newton Abbot yard, and was taken over by the G.W. Railway with the other S.D. Railway stock in 1878. It has been used of late years (until the end of March) for pumping purposes at the loco- motive sheds, steam being supplied from an adjacent stationary boiler. The Tiny was described and illustrated in THE LOCOMOTIVE for August 14. 1920.

Reviews. 169.

British railway operation. T. Bernard Hare, London: The Modern Transport Publishing Co.
To those desirous of obtaining inside knowledge of the operation of British railways this book will be of more than ordinary value as in it we have the methods and ways described by a practical railway man actually engaged in the work he writes of. Although little fault can be found with Mr. Hare's very clear descriptive treatment of his subject, we confess we should like to have seen more in the way of indications of changes in the orthodox methods, now the railways find themselves in such a grave position due to the remarkable development of road transport. The possibility of getting more elastic working to better meet the competition of the motor, the speeding up of the goods service by improving the stock, handling it, decreasing the terrible loss due to the constant haulage of so much deadweight, are hardly mentioned, although the fitment of the goods trains with continuous brakes and automatic couplers is touched on, and reference to the want of such an improvement is discernable when signalling, timing of trains, etc., are under review. Sir Ralph Wedgewood's " Foreword" is aptly written. We welcome the book as one which gives the Whys and. Wherefores of many railway proceedings, and for this reason it will be a valuable addition to a railwayman's library.

Trials with vacuum brakes on long goods trains.Technical paper No. 254. Calcutta: Government Printing Office,
The Indian Railway Board has published in the above the results of a series of trials made by R.C. Case of the Loco. Dept., Eastern Bengal Ry., with the vacuum brake on long goods trains. The notes are of a very ordinary kind and offer no new features. It is much to be regretted that experiments were not possible with a traffic train of vehicles taken from service. Such was not possible, however, and the usual recourse had to be made to a specially prepared train which of course considerably discounts the value of the results. The diagrams accompanying it show clearly where difficulty may be expected with the vacuum brake on very long goods trains.

When railroads were new. C.F. Carter. Centenary Edition. London: Simmons-Boardman Publishing Co.,
This book, described as an account of the early American railroads and the men who built and ran them, is written by an old railroad man. It may be compared with some of the popular historical books dealing with the interesting features of British railways and is full of curious information. It describes the early history of the Erie, the Pennsylvania lines, the Baltimore and Ohio, the New York Central, the first Pacific Railroad the Santa Fe, the Rio Grande, and the Canadian Pacific, the last of the pioneer lines of North America. Several interesting pictures of the early days of railroads are included. The author explains the difficulties he has found in gathering the fragments of early railroad history into a coherent narrative that would be neither a dry treatise nor a collection of anecdotes. Thus dates that vary a whole year are given for so recent an event as the running of the first through passenger train over the Canadian Pacific Railway. The management of the largest locomotive works in America asserts that the first engine built by their founder ran only on fair days at the outset of its career, being replaced by horses on rainy days by its proud but prudent owners. On the other hand, the driver who claims to have had charge of this first locomotive declares he ran it every day, wet or fine, and the author gives other examples of these contradictory statements. The book is most entertaining as well as instructive to British readers, as giving fresh and little-known information on American railway history and conditions. It is furnished with a serviceable index, is clearly printed, and well produced generally.

Modern railway signalling. M.G. Tweedie and T. S. Lascelles, London: The Gresham Publishing Co., Ltd.,
This comprehensive work deals with present-day railway signal engineering and is designed not only to meet the needs of the younger employees in a signal department, who may wish to add to their workshop experience by a thorough knowledge of the latest practice of the science of signalling in all its branches, but will also well repay study by those who have long passed their apprenticeship in railway work. The first six chapters deal with the principles of signalling; signal boxes, various types of lever and locking frames; signals, ground connections, examples of two and three-position signalling, double wire signal and point working. The methods of making locking sketches, locking tables, and dog charts are fully explained. Later sections give full descriptions of such matters as non-automatic, double-line block signalling, single line working (non-automatic), track circuits, automatic block signalling, point working, two and three-position signalling, day colour-light-signals, telegraphs and telephones, and the application of power to signal working, including the electric, electro-pneurnatic and pneumatic systems. Cab signalling and automatic train stops are dealt with in the chapter on signalling in fog and falling snow. The work is profusely illustrated with 291 diagrams and plans and half-tone illustra- tions, including two plates of an " eye-ball" train diagram, and a diagram showing auxiliary sidings, approach lines, platforms and signalling arrangements at Glasgow Central station. The subject is dealt with interestingly throughout and it can be commended to all connected with signalling and signal engineering.

The Channel Islands. London: Published by the Great Western & the Southern Railways.
This attractive guide and handbook is published jointly by the above railways and can be obtained from the Superintendent of the line, Paddington Station, or the chief commercial manager, London Bridge station. Apart from the excellent illustrations of the scenery of these popular islands, the text is not only informative but written in a very interesting style. The first section describes the many attractions of St. Helier, St. Aubin, St. Brelades, Corbiere and the North and East Coasts of Jersey. This is followed by the Guernsey portion, which deals with St. Peter Port, Moulin Huet, Icart, Moye Point, Rocquaine Bay, etc., while the last chapter is devoted to the islands of Alderney and Sark. It should be mentioned that holders of return tickets can travel via Weymouth or via Southampton on the homeward journey.

No. 418 (15 June 1927)

The preservation of the "Gladstone". 171-2. illustration
Illustration shows 0-4-2 Gladstone in Stroudley yellow livery alongside Lord Nelson. Ceremony at York on 31 May 1927 involved  W.H. Whitworth of Stephenson Locomotive Society, C.M. Stedman, divisional running superintendent, George Davidson, divisional general manager, J.B. Harper, chairman of York Museum Committee and E.M. Bywell curator.

Two-cylinder compound freight locomotives, Central Argentine Ry. 172-3. illustration
Twenty cross compound 2-8-2 built by Beyer, Peacock & Co.  Belpaire firebox: hish pressure cylinder was 21 x 26in and low pressure 31½ x 26in. Boiler pressure 200 psi.

Locomotives for Kimberley Diamond Mines. 173. illustration
John Fowler & Co. (Leeds) Ltd  supplied four 0-4-2T for 18 inch gauge lines ownde by De Beers Consolidated Mines in South Africa

New six-coupled bogie goods engines, Southern Railway. 174-5. illustration, diagram (side elevation)
S15: Urie design modified by Maunsell

Pennsylvania R.R. 175
A new number plate had been adopted for the front of the smokebox of locomotives made in the form of a " key-stone," the accepted emblem of the State of Pennsylvania and the adopted "trade-mark" of the Pennsylvania R.R.

London & North Eastern Ry. 175
No. 1268, 1272 and 1273 were 0-6-0 (J39 class) completed at Darlington. Several of the recently purchased 2-8-0 (W.D. type) were being reconditioned at Gorton. No. 6633 (late W.D. 2126) had already been put into traffic.

Inspection cars, Great Southern Railways of Ireland. 175. illustration
For use by engineers when inspecting on the Great Southern Rys. of Ireland, four closed type petrol railcars had been built by the Drewry Car Co. at their works at Burton-on-Trent. These vehicles are fitted with the builders' standard 20-h.p. engines and three-speed gear boxes, with reverse gears giving all three speeds in each direction. The control arrangements are arranged at the centre of the car, so that whichever way it is running the. leading seat is available for the use of the inspecting engineer. The seats, which are fitted with reversible back rests, are arranged so that there is a gangway along one side of the car, and ample space is left at each end for the provision of a folding table on which plans and drawings can be examined. The cars are built to suit the Irish standard 5 ft. 3 in. gauge track, and are capable of a maximum speed of 35 to 40 miles per hour.

Union Pacific R.R. 175
By utilising compressed air from the air brake supply for operating the engine whistle on certain services whereon much signalling is performed by the whistle, it is claimed that a saving in fuel of a value of about 5s. per locomotive per day is made. Several railways are now operating the engine whistle in this manner, so saving high pressure, superheated steam.

Southern Pacific R.R. 175
By the introduction of much longer runs for passenger locomotives, Los Angeles to El Paso, 815 miles, and so cutting out four changes of engines at intermediate points, the number of locomotives required for operating ten trains per.day, five in each direction, has been reduced from fifty to twenty-five, the labour, stores and expenses of the intermediate sheds curtailed, and about £12,000 saved per annum.

"Garratt" patent locomotives (2-6-0 + 0-6-2 type) for the London, Midland & Scottish Railway Co.. 176. illustration
Three supplied by Beyer Peacock & Co. to specification of Sir Henry Fowler for Toton to Brent coal traffic

The first "Baltic" express locomotives in the U.S.A. 177-8. illustration
American Locomotive Co. for New York Central Railway to work fastest expresses such as Twentieth Century Limited and Empire State Express.

Modified Fairlie locomotives, South African Railways. 178-9. illustration
Built by Henschel & Sons of Cassel with a long rigid frame. 2-8-2+2-8-2

Great Western Ry. 178.
'The first of the new "Cathedral" class 4-6-0 four-cylinder express engines is expected to be completed in early June': notes main dimensions correctly

Benguella Railway Garratt locomotives, valves and valve gear. 179-80. diagram
with Lentz valve gear

Great Western Ry. 180
Several of the 0-6-2T (ex. T.V.R.) are appearing with new tanks, which makes them closely resemble Barry engines in external appearance. One of these is No. 577, the date on the motion is 11/26 ; another is No. 484, which has a Belpaire firebox and Swindon superheater; others are 583, dated 6/25, and 573 dated 9/26. Others of the 0-6-2T type have been rebuilt with Camel domeless boilers, e.g., No. 284, 335, 394, 292, 399 (H. L. & Co., 3411/1920), 297, 374, 286, 364, 298 (11/25), 602. Makers' plates are being removed from the leading splashers and put on the back of the bunker in many cases. New tank side sheets have been provided in some instances. Of the latest series of 0-6-2T, No: 5680/1/2/6 are at Barry and 5684/7/8/9/90/3 on the T.V. section. No. 5619, at one time in London, is now on the T.V. section. Several 2-6-2T of the 4500 class have recently been sent to London for empty coach working, among them being Nos. 4592-4599, 5500 and 5501, which are new from Swindon.

Messrs. Kitson & Co. Ltd. 180
Had orders from the Midland Ry. of Western Australia for three 2-8-2 tender locomotives, and from the Manchester Ship Canal Co. for one 0-6-0 tank engine.

An experimental water-tube boiler locomotive. 180-2. illustration, 2 diagrams (including side & front elevations)
Several Paris, Lyons & Mediterranean Ry., Algerian Lines 4-6-0 locomotives were fitted with Robert water tube boilers in 1909-12..

Autocars for the German Government Railways, 183-4. 4 illustrations, diagram
Manufactured by Waggon & Maschinenbau Actiengesellschaft of Gorlitz: four wheel and bogie versions with petrol engines (in case of bogie vehicle mounted on the bogie).

The locomotive history of the Great Indian Peninsular Railway. 184-6. illustration, diagram (side elevation)
On 19 July 1867 the Mullah Viaduct on the Bhore Ghat collapsed only four days after it had been inspected by J.R. Manning, chief engineer and Captain, deputy consulting engineer.

F.W. Brewer. Modern locomotive superheating on the Great Western Railway. 186-8.
Engines of the two-cylinder 4-6-0 class were built from 1902 to 1913. The two first examples had 200 lb. steam pressure. The third engine, turned out at the end of 1903, and named Albion, was given 225 lb., with a view to running it in competition with the de Glehn 4-4-2 compound, La France, which had in that year been purchased by the G.W.R. Company, and which had a working pressure of 227 lb. per sq. in. As, however, the Swindon-built engine had the advantage over the compound in the matter of adhesion weight, it was reconstructed in October, 1904, as an Atlantic, in order to modify the disparity between the two engines. Thirteen other two-cylinder 4-4-2s followed in 1905, and these also had 225 lb. pressure. The cylinders, as in the case of the 4-6-0s, were 18 in. by 30 in., and the coupled wheels 6 ft. 8½in. Several of the Atlantics, as such, were equipped with superheaters having 14 large flues, and 84 steam tubes, in 1910-1911. The French compound, La France, was superheated later. In September, 1913, this engine, which then carried its original boiler, was provided with a superheater having 12 large fire tubes and 96 steam tubes; the superheating surface was 280.49 ft2, and the total heating surface 1706.;89 ft2 Three years later, in September, 1916, La France was rebuilt with a standard No. 1 coned boiler of the size used for the 4-6-0s and simple 4-4-2's; max. dia., 5 ft. 6 in. ; length of barrel, 14 ft. 10 in.; pressure, 225psi. This boiler was fitted with a 14-112 superheater, the superheating surface of which was 330.;05 ft2, while the total heating surface was augmented to 2171.;43 ft2 La France was withdrawn from service in 1926, after running 23 years. In 1905, the Company purchased two larger de Glehn compound Atlantics, which were afterwards named President and Alliance, respectively. The latter was rebuilt with a No. 1 taper boiler in August, 1907, and the former in February, 1910. Both engines were provided with superheaters of the 14-112 pattern subsequently fitted to La France, the President being superheated in January, 1914, and the Alliance in July, 1915. The steam pressure and the superheating and total heating surfaces, were as mentioned in the case of the coned boiler of La France. The two larger French engines were now the only Atlantics running on the Great Western. The Swindon 4-6-0 which was reconstructed as a 4-4-2 in 1904 was changed back to its original type in 1907, and the 13 other simple" Atlantics" were converted to 4-6-0s in 1912. As stated, the earlier two-cylinder 4-6-0 engines had 18 in. cylinders. Later ones had 18t in. or 18t in. cylinders, as the case may be, the latter now being the common size. The superheaters (14-84) have a superheating surface of 262 .;62 ft2, and the boilers a total heating surface, in round figures, of 2,000 ft2t.
The surviving French compounds had two 143/16 in. by 253/16 in. h. p. cylinders, and two 235/8 in. by 253/16 in. l.p. cylinders: coupled wheels, 6 ft. 8½ in. These engines then had 14-84 superheaters. It was due to the introduction of these compounds that the four-cylinder simple type was adopted by the Great Western. The first example of that type on the line was built in 1906 as a 4-4-2, with 14¼ in. by 26 in. cylinders, 225 lb. pressure and 6ft. 8½ in. wheels. This engine, the North Star, which was altered to a 4-6-0 in December, 1909, was not superheated as an Atlantic, and was the only example of its particular kind at the time. All of the succeeding four-cylinder simples were, therefore, of the 4-6-0 type, with one exception, that of the former 4-6-2. The four-cylinder 4-6-0s proper date from 1907. Down to those built in 1922, these engines had No. 1 boilers and had either 14-84 or 14-112 superheaters (superheating surface, and total heating surface as in the case of the two-cylinder 4-6-0s). In 1913, the cylinder dia. was increased to 14i in., but one engine of a series then turned out, had, for trial purposes, 15 in. cylinders, and this latter size was adopted for new engines until the well-known Castle class, with 16 in. by 26 in. cylinders, and larger taper boilers (outside diameters 5 ft. 115/16 in. and 5 ft. 9 in.) appeared in 1923 onwards. The superheating surface, 262 .;62 ft2, that of the standard 14-84 apparatus, remained as before, but the aggregate heating surface was increased to 2,312 ft2
The 4-6-2 engine, as such, was dealt with in the previous article. It was now a Castle class 4-6-0, and the earlier four-cylinder 4-6-0s, the various series of which all come under the category of Stars, are also to be converted to Castles in due course, and some have already been so rebuilt.
As regards the goods engines, we have, first, those of the double-framed 2-6-0 type (2600 class), of 1900, with 18 in. by 26 in. cylinders and 4 ft. 7½in. coupled wheels. The superheaters of some of these engines had 112 steam tubes (superheating surface, 249.69 ft2), while others had. 84 such tubes (superheating surface 179.1 ft2), the number of large fire- tubes being 14 in both cases. With the former, the total heating surface amounted to 1728 .;05 ft2, and with the latter it was 1530.8 ft2 Standard 4 taper boilers carrying 200 lb. pressure are now fitted to this class, and the later ones have a total heating surface of 1670 .;15 ft2 Present-day practice is to equip the engines with 14-84 superheaters having a superheating surface of 191.79 ft2 The initial batches had straight-barrelled Belpaire boilers, and the first engine had 180 lb. pressure. Some of the former taper boilers were pressed at 195 lb., and others at 200 lb. per sq. in. This class now includes the ten Krugers, No. 2601-2610, rebuilt to conform with the 2600s proper.
In 1903 appeared the first example of the 2-8-0 tender type, with outside cylinders, 18 in. by 30 in. coupled wheels, 4 ft. 7½in.; coned boiler, 4 ft. 10¾ in. and 5 ft. 6 in. by 14 ft. 10 in.; pressure, 200 lb., subsequently increased to 225 lb. Engines of this (the 2800) class, were turned out down to 1919, and those built in 1911 and later had superheaters and boilers similar to those of the 4-6-0 express engines. A beginning was made with the superheating of the saturated engines in 1909, the apparatus fitted being in some cases of the 14-112, and in other instances of the 14-84 size. The latter represents the Co.' s latest practice; the superheating surface is 262.;62 ft2, and the total heating surface of the new boilers is 2104.0 ft2 The cylinders are now 183/8in. to 18½ in. in dia.
Mixed traffic engines of the outside cylinder 2-6-0 type were introduced in 1911 (4300 class). The cylinders are 18½ in. by 30 in., and the coupled wheels 5 ft. 8 in. . The boilers are of the same size as those of the inside cylinder 2-6-0s, but the total heating surface of the first series differed from that of the later engines. All, however, had 14-fire tube superheaters. These, in a number of the engines, housed 112 steam tubes (superheating surface 249.;69 ft2 ; total heating surface of boiler, 1728.05 ft2), while those in other engines contained 84 tubes (super- heating area, 215.8 ft2, and total heating surface, 1566.74 ft2). The modern superheaters are 14-84s. The total heating surface of the more recent engines is 1670.15 ft2 and the superheating surface 191.79 ft2 The steam pressure is 200 lb., as at first. There are now no fewer than 322 examples of the 4300 class on the Great Western Ry., 287 of which were built at Swindon from 1911 to 1925. Thirty-five others were supplied by Robert Stephenson and Co., Ltd., in 1921-22.
In 1919, an engine of the 2-8-0 type, with 19 in. by 30 in. outside cylinders, and driving wheels as large as 5 ft. 8 in., was constructed at Swindon. It was then fitted with a boiler of the kind carried by the later 4 ft. 7½ in. 2-8-0s, but was equipped with a superheater with 112 steam tubes, instead of 84 (14-112). In May, 1921, this engine (4700 class) was rebuilt with a much bigger boiler, the outside diameters of which were 5 ft. 6 in. and 6 ft.; length of barrel, as before, 14 ft. 10 in.; and steam pressure, 225 lb. The previous boiler had a superheating surface of 330.05 ft2, and a total heating surface of 2171.43 ft2 The corresponding figures for the 'present boiler, which is equipped with 16 large flues and 96 superheater steam tubes, are 289.60 ft2, and 2521.70 ft2 Eight similar engines were turned out in 1922-23, these having the larger boilers and the 16-96 superheaters.
There is also another class of 2-8-0s on the Great Western-the RODs. Twenty of these, which are of the well-known Great Central design, were purchased by the Company from the Government in 1919. They have 21 in. by 26 in. outside cylinders, 4 ft. 8 in. coupled wheels, 185 lb. pressure, and 5 ft. by 15 ft. superheater boilers, all of which were originally fitted with 22-element Robinson superheaters. There were 44 steam tubes; the heating surface of these was 255 ft2, and the total for the whole boiler was 1,756 ft2 In 1924-25, several of the RODs were furnished with 12-72 Swindon superheaters in place of the former Robinson apparatus. With this alteration, the superheating surface became 225 .;12 ft2, but the total heating surface (owing to the larger number of small fire tubes employed) was increased to 1816.;50 ft2 As the original boilers are at present in use, the working pressure is still 185 lb.
A considerable number of the ordinary inside-framed 0-6-0 tender engines have been provided with Swindon superheaters, some with 48, and others (later), with 36 steam tubes, all having 6 large fire- tubes. The superheating surface varies from. 97.3 ft2 to 75.30 ft2 ; and the total heating surface from 1191.49ft2., to 1142.;60 ft2; steam pressure, 180 lb. These engines have 17 in. to 17t in. by 24 in. cylinders, and 5 ft. 2 in. wheels. The boilers (non-taper) are 4 ft. 5 in. by 10ft. 3 in., and are fitted with domes.
Some of the old passenger tender engines have also been superheated, those so treated having previously been rebuilt with Belpaire fireboxes and given, as a rule, an increased steam pressure. Such engines include the following double-framed classes —the 5 ft. 2 in. 2-4-0s, of the 3201 . and . 3501. series (1884-5), which have 17 in. by 26 in. cylinders and (now) 180 lb. pressure; the 5 ft. 2 in. 4-4-0s, . 3521,. etc., series (converted from tank engines, 1889-1902), with 17 in. by. 24 in.rcylinders : pressure, 180 lb. to 200 lb., those with the latter figure having taper boilers; and the .3206. class of 6 ft. 2 in. 2-4-0s, which have 18 in. by 26 in. cylinders and 180 lb. pressure, and which were first built in 1889. Swindon super- heaters have also been fitted to certain members of the 3232. class of inside-framed 2-4-0s (1892-3), the cylinders of which are 17½ in. by 24 in., and the coupled wheels 6 ft. 8½ in.; the pressure, in the case of these engines, is only 165 lb. The Swindon superheaters for the foregoing old types and classes of passenger engines have been either of the 6-36 or 6-48 order, with from 83.;93 ft2 to 97.;34 ft2 of heating surface. The latest practice is to fit the smaller size. Approximately, the total heating surface of the different engines is 1,200 ft2, inclusive of the superheater. The. 3501s,. it should be noted, were, like the. 3521s,. formerly tank engines. Some mention should be made of the grate area employed in what may be termed the standard classes of engines dealt with herein. The. Duke. have 17.;2 ft2; the. Bulldogs. and. Flowers 20.35 ft2, and the Cities and Counties. 20.;56 sq. ft. These are all 4-4-0s. The two-cylinder 4-6-0s have 27 .;07 ft2, as also do the four-cylinder engines with the exception of those of the. Castle. class, in which the grate area is 30.;28 ft2 The two French compounds, 4-4-2s, have 27.07 ft2 The grate area of the inside cylinder 2-6-0 goods engines is 20.56 ft2; that of the Swindon-built 2-8-0s, 27.07 ft2; and that of the. ROD 2-8-0s, 26.25 ft2 The 0-6-0s have 15.;45 ft2, and the mixed traffic,outside cylinder,2-6-0s, 20.56 sq. ft. The large-boilered 5 ft. 8 in. 2-8-0s have the same grate area as the. Castles,. viz., 30.28 ft2, the boiler however, being otherwise bigger than that fitted to the express engines of that class.
In a subsequent article, the superheating of the different types of tank engines will be described. G.J. Churchward, who retired from the position of chief mechanical engineer of the G W. Ry. in 1922, was responsible for the application of superheating on this line down to that year. Since then, his successor, C.B. Collett, O.B.E., has dealt with the matter.

Machines for spring works. 188-9
The railway spring-making trade is very specialised, and little is known of the methods and machines employed by engineers not im- mediately connected with it. From time to time we report new developments, such as, in recent issues the heavy forging machine for the cold preparation of spring plates, by Henry Pels, and the novel steel-frame hooping press by the Leeds Engineering & Hydraulic Co., Ltd. It will doubtless be of interest, therefore, to give a few particulars of recent machinery for this special trade which has recently been produced in Germany. The first illustration (Fig. 1) shows the very latest type of load-testing machine, made to conform to the requirements of the German railways specification by the Company Losenhausenwerk, of Dusseldorf. This machine is suitable for testing laminated or coiled springs, under either static or dynamic loading.

Stephenson's handwriting. 190-1.
Communications between George Stephenson and Michael Longridge.

The Alexandra (Newport & South Wales) Docks and Railway and its locomotives. 191-2. 3 illustrations

Technical essays. No. XIII. On steam distribution. 192-3

Ljungstrom turbine locomotive. 193
On 20 May the Beyer Peacock experimental locomotive hauled an up train into St. Pancras.

J.C.M. Rolland. Victorian Railway notes. 194; 195-7. 9 illustrations

New wagons for Anglo-German goods service via the Harwich-Zeebrugge train ferry. 199-200. illustration
Built Wismar Waggon Fabrik

The Institute of Transport, Birmingham Meeting. 202
Congress of the Institute of Transport was held at Birmingham from 18-21 May under the presidency of R.H. Selbie, general manager of the Metropolitan Ry. On 19 May, following a civic welcome to the delegates by A.H. James, the Lord Mayor, two papers were read and discussed: Traffic Control, by Mr. J. H. Follows and Industry and Transport, by George Cadbury. In the afternoon, visits were made by three separate parties to Cadbury's works, Guy Motors, and the L.M.S. Ry. Curzon Street Goods Depot, on the site of the old terminus of the London and Birmingham and Grand Junction Rys. The London and Birmingham Ry. Hotel building is now used as the District Goods Manager's offices. The old station roofs still remain, although additions and alterations have been made. The elaborate boundary wall of the Grand Junction Company's property, also the booking offices, as well as other traces of the old station can be seen. The London and Birmingham Company's station-master's house in the stable yard is at the present time used as a repair shed for wagon tarpaulins. Although the old landmarks are in evidence, the handling of goods is effected on up-to-date lines; electric battery trucks are almost universally employed for loading and unloading. On Friday morning, 20 May E. S. Shrapnell-Smith and W. P. Robinson presented a paper, Highways cost per ton mile of traffic, and Principal Grant Robertson, of the University of Birmingham, gave Transport in England—a brief survey. Both papers were followed by interesting discussions. In the afternoon, a party of members, invited by the L.M.S. Ry. Co., went by special train to Derby to view the Carriage and Wagon Works, where they were conducted round by J. W. Smith, the works manager [KPJ: should this have been W.J. Smith?]. Modern methods of building carriage and wagon stock on ass production lines were in evidence. Various stages of construction were shown from the saw-mill to the paint shop. The timber is cut to templates, and finished to final dimensions before being passed on to the erectors. There are about ten operations of three minutes each in constructing a standard goods wagon, so that a new wagon is turned out every thirty minutes. Hydraulic power tools are used for cramping, and pneumatic for drilling, screwing, bolt-tightening, etc. Carriage building is, arranged on similar "quick production" methods. A bogie composite carriage was erected for the benefit of the visitors in less than twenty minutes, the schedule time. Saturday's programme included a visit to the "Sentinel" Wagon Works, at Shrewsbury. The party were shown the various stages of construction of the "Sentinel" road wagons, as well as the rail-motors and shunting locomotives. A recently built chain-driven standard gauge locomotive was being tested in steam, and the many advantages claimed for this efficient and economical type of locomotive were clearly demonstrated. A large number of vehicles under construction, both road and rail, were seen in the shops, including two fine shunting locomotives, ready for delivery to the Great Southern Rys. of Ireland. The successful organisation of the Congress was effected by the Local Congress Committee, in conjunction with the Headquarters Committee, of which Mr. A. Winter Gray is secretary.

Correspondence. 202-3

The Aerolite: N.E. Ry. F. W. Brewer.
Re
R.G. Bleasdale's letter in your issue for December last (p. 407): Bleasdale places the 1851 Aerolite in the same category with Gray's engine of 1840, but this classification is, I think, a mistake, the former having outside cylinders, and the latter engine inside cylinders. Apparently, the deciding factor is that both engines had inside bearings for the driving axle, but this feature, in the case of the Kitson engine, was obviously adopted in consequence of the cylinders being placed outside the frames. Gray's design was copied subsequently in the Jenny Lind, and in other partly outside-framed six-wheeled singles, all with inside cylinders, the inside position for the cylinders being clearly an essential part of the design, quite as much so as the choice of internal frames and bearings for the driving wheels. Engines having outside cylinders cannot, therefore, rightly be classed with Gray's or Wilson's 2-2-2 locomotives of the pattern in question. It might be said, more accurately, that the Aerolite of 1851 was a development of Allan's outside cylinder 2-2-2 engine of 1845, but, personally, I regard the Aerolite as having been of Kitson's—the makers—own design. The six-wheeled single with, inside cylinders and outside frames (for all wheels) was first introduced by the Stephensons in 1833, and, apart from the position of the cylinders, the differences exhibited in the various locomotives of that type which came out afterwards constituted differences and improvements in design, rather than the inventions of a new type. The success of Gray's 2-2-2 engines was attributable to his " horse-leg " expansion gear ; to a liberal amount of heating surface; and to a comparatively high steam pressure. The Jenny Lind, which had the Stephenson motion, not only also had an ample allowance of heating surface, but had a boiler pressure still higher than that of Gray's engines. Hence their popularity. Outwardly, the chief distinguishing features were outside frames and axle-boxes for the leading and trailing wheels, and inside frames and bearings for the driving wheels. But these features, by themselves, counted for little. The plan of disposing the H.P. and L.P. cylinders at different angles was, I believe, adopted by T. W. Worsdell in the case of his 1518 class of 7 ft. 7¼ in. 4-2-2 compound, owing to the large dia. of the cylinders of these engines, viz., 20 in. for the H.P., and 28 in. for the L.P., these cylinders having to be accommodated between the frames. There was formerly one other engine, No. 1619, built by Wilson Worsdell as a two-cylinder compound in 1893, which had the cylinders similarly arranged. The cylinders were of the same size as the 1517" class, and the steam chests were outside the frames. A cross-section which I possess of the later Aerolite, built as a two-cylinder compound, shows the centres of both cylinders to be in the same horizontal plane, there being no necessity, in view of the small sizes of the cylinders, 13 in. and 18½ in. by 20 in., for stepping them. It is probable, however, that Bleasdale did not intend to imply that recourse was had to the stepping arrangement in the case of the Aerolite itself. For starting purposes, all of the Worsdell two-cylinder compounds were provided with the flap-valve referred to by Bleasdale. He will, I thick, on consideration see that the little tank engine Aerolite ," of 1851, which had 11 in. by 22 in. outside cylinders, 581 ft2 of heating surface, and a grate area of only 9.8 ft2, had nothing in common with Gray's 2-2-2 design, except the inside driving wheel bearings, as that design invariably embodied inside cylinders, so far as I know. Of course, outside frames throughout have been tried in six-wheeled single engines, but only in very few instances.

The Killingworth Locomotive. Robert Young. 203
In an article entitled "Model of Stephenson's Killingworth Locomotive" in the May issue of your magazine, the extraordinary statement is made that the exhaust pipe of the Killingworth engine was fitted with a "blast nozzle." This is a claim which is quite new, and ask for the authority on which the writer bases his assertion. So far as is known no blast nozzle was fitted to any locomotive until Hackworth used it in the Royal George in 1827. Robert Stephenson wrote : "Whatever merit or value may attach to this alteration, I believe to be due to Timothy Hackworth. See Smiles's Lives of George and Robert Stephenson, third volume of Lives of the Engineers, first edition, ,appendix, p. 503. London: John Murray, 1862.

British locomotive builders, past and present. F. W. Brewer. 203
Unless they are already included under a different title, the two following firms ought, perhaps, to be added to the lists published in your issues for April and May : (1). The Millbrook Foundry Co., Southampton ; (2). Christie, Adams & Hill, Thames, Bank Ironworks. These firms supplied one or two locomotives for the L. & S.W.R. The firm first mentioned built a 5 ft. 6 in. 2-2-2 engine, named Southampton, in 1840, and Messrs. Christie delivered, in 1848, six 6 ft 6 in. singles, which bore the names, Rocklin, Avon, Test, Trent, Stour, and Frome, respectively, and which were presumably constructed at the Thames Bank Ironworks. All seven engines were purchased by the L. & S.W.R. Co. Can any reader give us more information about these two locomotive building concerns?

British locomotive builders, past and present. 203
Referring to the alphabetical list of private locomotive building concerns in this country which appeared in the last two issues it has been pointed out to us that the firm of Robert Stephenson & Co. was established by George and Robert Stephenson, Edward Pease and Michael Longridge, and not as stated. Messrs. Hardy Rail Motors Ltd., of 50 Charing Cross, S.W.1, are manufacturers of petrol locomotives at their works at Slough and their name was omitted from our list by an oversight.

Reviews. 203-4

Lubrication and lubricants, by L Archbutt and R. M. Deeley. 5th edition. London : Chas. Griffin & Co. Ltd.
Since this book was written in 1912 great advance has been made in available information regarding the composition, handling and use of lubricating materials, and much progress has been made in the appliances adopted for satisfactory use of them. This issue of a fifth edition has entailed a con-siderable amount of revision, and much of the contents have been re-written to bring them up-to-date. The authors are evidently in possession of a vast amount of information on the subject, and they have utilised a consider-able portion of this in a particularly attractive manner in the different chapters forming this very exhaustive treatise. The composition of various lubricants is examined by analysis, tests are described and methods of investigation clearly explained. In Chapter XI a very complete survey of lubri-cators of almost every known type is given, a great variety are fully illustrated, Chapter XII is devoted to the design and means of lubrication of bearings. In Chapter XIII ball and roller bearings are dealt with, but we note the authors are very cautious in their references to any application to railway rolling stock, presumably the recent adoption on some rail-ways will form matter for a future edition ; such would be very welcome to many railway engineers. We recommend the book as a standard of reference for all interested in power and machinery.

Indian railways : rates and regulations. By N. B. Mehta, Ph.D. London : P. S. King & Son, Ltd. 10/6.
It is interesting to read the views of an Indian writer on the' present position of railways in that country. That the author is thoroughly in favour of the State management of railways is evidenced throughout the book, but as to how far this benefits the commercial public of India appears problematical. Dr. Mehta analyses many of the rates charged on the Indian railways, and favours the establishment of a Rates Advisory Commission to co-operate with the Railway Board in fixing rates for future adoption and control. Mehta's book will be read by transportation authorities with more than ordinary interest.

Round Tours in England, Wales, Scotland and Ireland, by Railway. From the Railway Information Bureau, 35 Parliament Street, Westminster, S.W.1.
We have received a booklet compiled for the use of visitors to this country, affording information as to opportunities for seeing the beauty spots by circular tours of different lengths, at inclusive fares, which is the result of combined action on the part of the railway companies. Several tours comprise journeys by rail, road and steamer, and in some cases cover more than one company's system; alternative routes in either direction are provided. Break of journey can be made when going or returning at any point en route. The "go-as-you-please" character should appeal to those who have leisure as well as to those whose itinerary is planned to the last moment. There is no better way of seeing Great Britain than by the railway,- which is known to be the last word in comfort, speed and smooth running. Most of the journeys naturally start from London, but some are in operation from Glasgow. A reduction of 25 per cent in the single fares from point to point is made in the through fares, and these are quoted in English money whilst for the convenience of American visitors they are also given in dollars and cents.

The Railway Year Book. London : Railway Publishing Co., Ltd.
With the present issue this useful book of reference enters upon its thirtieth year of publication.

No. 419 (15 July 1927)

Garratt articulated locomotives, Mauritius railways. 205. illustration
Three large Garratt locomotives of entirely new design were ordered by the Crown Agents for the Colonies for the Mauritius Railways, from Beyer, Peacock & Co., Ltd., on 14 December 1926, and they were completed and shipped from Birkenhead on 30 April 1927, nineteen weeks from receipt of the order.

L.M. & S. Rv. appointments. 205
Officially notified of the following appointments :- W. Land to be assistant to superintendent of motive power, chief general superintendent's office, Crewe. W. Paterson to be assistant to superintendent of motive power, Derby. W. F. BJake to be assistant to superintendent of motive power, Derby. H. D. Atkinson to be assistant to superintendent of motive power, Derby. O. E. Kinsman to be assistant, motive power staff section, Derby. R. C Morris to be district locomotive superintendent's assistant, Devons Road, Bow. G. F. Horne to be district locomotive superintendent's assistant. Newton Heath.

United Dairies Ltd. 205
Applied for permission to construct a light railway at Finchley to bring milk to London in specially constructed glass-lined tank wagons.

Four-cylinder 4-6-0 express locomotive, Great Western Ry. 206-7. 3 illustrations.
King class: King George V illustrated

Vacuum brake on freight trains in India. 225.
Signed Celer et Audax

Factors in the design of steam locomotives. Section II. Combustion: firegrate and smokebox. 231-3.

C.A. Cardew. Influence of driving wheel diameter upon the steam consumption and overall economy of the steam locomotive. 233-4.
Higher piston speeds lead to higher thermal efficiency as demonstrated in Willans tests on stationary engines; but higher piston speeds lead to increased friction of crank pins, crosshead slides and pistons; large wheels lead to less vibration and less stress to the track, and to less hammer blow on bridges and other structures.

Light shunting tractors. 235. illustration
Mercury tractors with petrol engine made by Bramco of Birmingham.

Axleboxes of Anglo-German wagons, Harwich-Zeebrugge train ferry. 236. diagram

Recent accidents. 236-7.
Southern Railway: 4 November 1926 near Bramshot Halt: collision due to deceased driver failing to observe signals: Col. Pringle investigated. Also accidents at  Fenchurch Street collision  between LMS train hauled by 4-4-2T and  LNER 2-4-2T type due to driver of the light engine being misled by an incorrect clear indication given by the disc signal controlling movements from the middle road according to Major Halll.  Two collisions occurred just outside Hull Paragon station within nine days. The first, on 5 February was caused by the 11.45 a.m. L.M. & S. R. excursion train from Halifax over-running the signals at Park Street box, and coming into side-long collision with the 12.59 p.m. passenger train from Hornsea, which was approaching the station at the same time. The excursion train was drawn by engine No. 136 (L. & N.W.R. Prince of Wales class) which, with its six-wheeled tender, weighed 107 tons, whilst that of the Hornsea train was L. and N.E.R. No. 1703, 0-4-4 type tank, weighing 541 tons, the loads of the trains being ten and eight bogie coaches respectively. Both engines and most of the coaches were more or less damaged, but fortunately personal injuries were slight, only two passengers in the Hornsea train and one in the excursion being involved. Lt.-Col. Hall states that the mishap was due to the misreading of the signals by the pilot driver of the excursion train, who was well acquainted with them, and is therefore solely responsible for the occurrence. The second collision, on 14 February was more serious:, the 08.22 passenger train from Withernsea colliding head-on with the 09.05 from Hull to Scarborough, near West Parade Junction signalbox, with the unfortunate result that eight passengers were killed outright, four others died in hospital, whilst twenty-four suffered serious and twenty-two minor injuries, all four enginemen being also injured. Col. Pringle, after a very exhaustive inquiry, found that both trains were properly signalled, and that the collision was due to the Scarborough train having been diverted to the incoming track on which the Withernsea train was approaching, owing to the premature moving of the points leading to that track by a signalman in Park Street box, which he found by experiment it was just possible to accomplish after the replacing of the starting signal and before the bogie wheels of the engine reached them. All points and signals controlled from Paragon station and Park Street boxes have been operated electro-pneumatically since 1905, the installation having worked with entire satisfaction ever since, and the Inspector does not think that this accident, or the previous one of February 5th, was in any way caused by un-necessary complications of lay-out add crossings.

List of British locomotive builders. 237
Our attention has been drawn to the omission of Messrs. Parfitt & Jenkins, of Cardiff, who built thirteen six-coupled saddle tank engines for the Marquis of Bute for the Cardiff Docks, and which were described in the LOCOMOTIVE in Vol. XXX., in the serial articles on the Cardiff Railway.

Correspondence.

The "Gladstones" F.W. Brewer. 237
It is greatly to the credit of the Stephenson Society and the Southern Ry. Company that they have been jointly instrumental in preventing the original member of this famous class of express locomotives from being scrapped. The question respecting the use of leading wheels as large as 6 ft. 6 in. in dia. seems to have arisen only in the case of this particular class, yet the "Gladstones " were preceded by six very similar 0-4-2's, which also had 6 ft. 6 in. driving wheels, and which were turned out at Brighton from 1878 to 1880. These earlier large-wheeled examples had, however, smaller cylinders, and smaller boilers, than were those of the " Gladstones." Like the latter, these prototypes were designed by Stroudley for working the 08.45 train from Brighton to London, and consequently they ranked as express engines. The success of their much better known, and far more efficient successors, the Gladstones themselves, was undoubtedly very largely due to the latter having comparatively big boilers, and a liberal amount of heating surface and grate area, features which were by no means common in 1882, when the engine now preserved at York first came out. Indeed, in these respects, the Gladstone compares very favourably with the first series of the Caledonian Ry. 4-4-0 Dunalastairs, of 1896, which also had 18¼ in. by 26 in. cylinders, 6 ft. 6 in. four-coupled wheels, and a grate area of 20.63 ft2 The boilers were 4 ft. 81 in. by 10 ft. 3½ in., and had a total heating surface of 1,403.23 ft2, the corresponding details of the " Gladstones " being 4 ft. 6 in. by 10 ft. 2 in., and the total heating surface (grate area 20.65 ft2), 1,492.10 ft2 The pressure carried by the Dunalastairs was 160 lb., or 20 lb. higher than that of the Gladstone, which, in 1882, had the then fairly common figure of 140 lb., but some of the later engines of this series had 150 lb.
The plan of placing the coupling-rod crank pins on the same side as the main cranks, instead of at an angle of 180 deg., was a favourite one with Stroudley, who first employed it when on the Highland Ry., in 1866. Dean adopted the same practice in the case of at least four classes of passenger engines on the Great Western Ry., from about 1888, and S.D. Holden also tried it in the 4-6-0s which were designed by him in 1911 for the Great Eastern line*. Otherwise, the practice remained, and still remains, an unusual one. Stroudley argued that, with his method, all the stresses were in accord, whereas, in the case of the ordinary plan, they were in opposition.

•Note.—This is not strictly accurate. The original engines of this class, turned out during S.D. Holden's regime, were built in the ordinary way with coupling rod crankpins at 180° to those of the main cranks, and there are five engines running thus. The remainder of the class, however, about 65 in number, have the crank arrangement described by Mr. Brewer, but were all built subsequently under the superintendence of the late A.J. Hill.

Railway pictures, films, etc. 237
As usual, there are a few railway pictures to be found in the Royal Academy's Exhibition this year. Artists do not appear to be able to find nearly as much interest in the "Iron horse" as they do in the "Iron ship"; railway subjects do not appeal to them,. notwithstanding the amount of romance that has been woven around the "steel track." No. 174 "Brigton," by Robert Houston, shows a passenger train in the near foreground, but the exact ownership is difficult to decipher. No. 559 "Through the marshes," by Stanhope A. Forbes, RA., is equally difficult to locate or say on which railway the scene is to be found. In No. 458 "The L.N.E.R. Musical Society at Queen's Hall," by F. W. Elwell, the artist is evidently much more at home, and gives a very realistic impression. An etching by a lady artist, Marjorie Sherlock, of "Waterloo," gives a very lifelike picture of the modern station, as we know it to-day, with a train's arrival.

No. 420 (15 August 1927)

4-6-0 three-cylinder express passenger engines, L.M. & S. Ry the "Royal Scot" No. 6100. 239-40. illustration, diagram (side elevation)
Built North British Locomotive Co. to the design of Sir Henry Fowler. Intended for haulage of express trains between London Euston and Glasgow Central. Number on tender, LMS device on cab side, no nameplate on locomotive illustrated. Next: No. 6101 Highland Chieftain.

2-8-2 type locomotives for the Kenya & Uganda Ry. 241-2. illustration, diagram (side elevation)
Built by Robert Stephenson & Co. Ltd of Darlington to the requirements of H.B. Emley, chief mecanical engineer under the supervision of Rendel, Palmer & Tritton on behalf of the Crown Agents

Multi-cylinder locoomotive Midland Ry.. 243-4. illustration, diagram (side elevation)
Cecil Paget patented design of 2-6-2 with sleeve valves, wide firebox of unusual construction. Scrapped in 1919, but achieved 82 mile/hour on trial. Aim was perfect balancing..

Dynamometeer car, State Railways of Czecho-Slovakia. 245-6; 247. 5 illustrations, diagram (side & rear cross-sections, 2 plans)
Built Ringhoffer Works in Prague.

Technical essays. No. XIV — On the training of the locomotive engineer. 246; 248.
Suggests sandwich course with winters spent in academic study and summers in workshops.

Centenary of the Baltimore & Ohio Railroad. 248-51. 3 illustrations.

Trial run to Plymouth of Great Western locomotive, No.6000.  251-2.
On 20 July Cornish Riviera was hauled to Plymouth with two coaches slipped at Westbury: it arrived 5 minutes early. Chief Inspector C. Read, Driver Young and fireman Pierce were on the footplate. List of King names ends feature.

Inness, R.H. (unattributed): Locomotive history of the Stockton & Darlington Railway, 1825-1876. 252-3.
Secondhand locomotives acquired: inside cylinder 0-6-0s: Nos. 81 Miller and 82 Hawthorn (Hawthorn WN 532-3 of 1846) acquired from Edinburgh & Glasgow Railway where they had been Cowlairs Incline locomotives. No. 82 illustrated at Shildon. Three Bury 0-4-0s were also acquired: 87 Fryerage; 88 Deanery and 89 Huddersfield: last illustrated as NER No. 1089 (this last was supplied to Manchester & Leeds Railway in 1846

Opening of the Romney, Hythe and Dymchurch, Ry. 253-5. 3 illustrations.
Mainly an engineering overview with only a modest amount of information on the locomotives.

Ambidextroous engine drivers. 255.
Lists thoes British railways which had adopted left-hand drive or right-hand drive: former included LNWR; latter the Midland

The "Imperial Indian Mail" trains. 262-4. 3  illustrations, plan.
Sleeping cars ran on six-wheeel bogies and were constructed for the weekly Bombay to Calcutta service. They were constructed at the Matunga workshops of the GIPR in Bombay. The ilustrations show the train leaving Parsik Tunnel and st the Ballard Pier station in Bombay.

Correspondence. 271

Vacuum brake on freight trains in India. W.H. Whitehouse. 271-2..

No. 421 (15 September 1927)

Express passenger locomotive with poppet valves: L. & N.E. Railway. 273-5. 5 illustrations.
This describes the fitting of oscillating cam valve gear to one member of the existing class: the following relate to new construction. The actual valves are illustrated. Also noted that goods engine which we fully described in issue of February 1926, had been in continuous service for upwards of two years, and the poppet valve gear had not, we are informed, given the slightest trouble, nor have any repairs or renewals to any part of it been required.

Four-cylinder express engine, Lord Nelson class, Southern Ry.  275 + colour folding plate facing page. diagram.
Coloured sectionalized diagrams.

Recent Spanish-built locomotives. 276-7. 3 illustrations, table.
4-8-2 and 2-8-0 for Northern Railway and 2-8-0 for Andalusian Railway.

London, Midland & Scottish Ry. (L. & N.W. Section).  277
Seven of the new three-cylinder 4-6-0 type passenger locomotives ex North British Loco. Co. are now in service on this section, Nos. 6100-2, 6105-6 and 6125-6. The first of the series, No. 6100, bears the name Royal Scot. It is understood that all the engines of this class are to be fitted with the Diamond Soot Blower. The construction of the fifty engines ordered from the North British Loco. Co. has been arranged as follows:-twenty-five at the Queen's Park Works, Nos. 6100-24; and twenty- five at the Hyde Park Works, Nos. 6125-49. The makers' numbers of the series are 23595-644 inclusive. At Crewe, the new 2-6-0s are completed up to No. 13082, whilst Nos. 13050-69 had been despatched to Derby for service on the Midland division. No. 4371  was the latest class 4 0-6-0 ex Barclay & Sons to be delivered.
4 ft., 3 in. 0-6-2 coal tanks Nos. 7772 and 7816 (old Nos. 1209 and 1250) had been fitted for working motor trains.
Three additional 6 ft. 6 in. Jumbos had been broken up at Crewe, viz., Nos. 787 Clarendon, 864 Pilot, and 2192 Caradoc. Other withdrawals comprise 0-6-2 coal tanks Nos. 678, 948, 3151, 3447 and 3752; 0-6-0 coal class Nos. 3038, 3173 and 3553; and 0-6-0 special tank No. 3047. L.M.S. 0-6-OT No. 1600 (formerly N.S.R. No. 5BA) had been withdrawn.

Sevenoaks accident, Southern Ry. 277
On Wednesday evening, 24 August, the 5 p.m. train from Cannon Street to Deal was derailed at 5.30 p.m. at Riverhead, between Dunton Green and Sevenoaks. The train was headed by the 2-6-4 tank engine River Cray, No. A800, and consisted of seven bogie carriages and a Pullman car. Thirteen passengers lost their lives, and 48 other passengers were more or less seriously injured. Sir John Pringle is conducting an enquiry into the cause of the disaster on behalf of the Ministry of Transport.

L. & N.E. Ry. 277
A new twin-coach intended for branch line traffic has been built, which, whilst it is 108 ft. 8½ in. long and 8 ft. 10 in. wide, tares only 37½ tons. It had gas lighting, and the bodies overhang the headstocks of the underframes. Articulated trains of four car bodies on five bogies, and 154 ft. 6 in. long, having accommodation for 182 third-class passengers, 22 first-class, and luggage and guard's compartments tare, 63 tons, or less than 1 ton for three passengers.

Sentinel-Carnmell steam rail-cars. 277
Sentinel-Carnmell steam rail-cars were working on the L.M. & S. Ry. branches to Methven, Airdrie-Newhouse, Dalmellington-Ayr, and between Strathaven and Coatbridge.

High speed electric locomotive, C. de F du Midi. 278-80. illustration, 2 diagrams (including side elevation)
Cam shaft control and quill drive

Light traffic work with the "Sentinel" locomotive. 281-2.
Narrow gauge back-to-back locomotive (described as articulated); also non-articulated locomotives for narrow gauge passenger-carrying lines in India and for the Egyptian Nile Delta Railway.

Bennett, A.R. The Malta Railway. 283-5. 5 illustrations.
Workshops at Hamrun. Valletta terminus partly in tunnel. Metre gauge. Manning Wardle 0-6-0Ts

Inness, R.H. (unattributed): Locomotive history of the Stockton & Darlington Railway, 1825-1876. 292-3. 2 illustrations.
Secondhand locomotives: NER 0-6-0 No. 2259; 2-2-2 No. 93 Uranus. Also tabluates new G. Wilson 0-6-0s.

Canada's first locomotive. 294. illustration

South African Railways. "Hulse"double-decked suburban coach. 299-300.  2 illustrations, diagram (side elevation & plan)
Designed by Oscar Hulse.

The locomotive history of the Great Indian Peninsular Railway. 300-2.  2 illustrations.
0-6-0 types: 46 engines supplied by Neilson & Co. in 1877: some were supplied without wheels as a stock of 5 ft. wheels existed supplied by the Yorkshire Engine Co, Class known as L/21 WN 2239-68 and 2310-25. Kitson & Co. supplied Class K/16 known as Kitson's heavy goods in 1877 WN 2146-55. They had 17¾ x 26in cylinders and 4ft 6in wheels. They had steam brakes.Further series followed: K/15 (WN 2180-96) and K/17 (WN 2241-6) with 18 inch diameter cylinders and Smith simple vacuum brakes.

Running a  British locomotive on a United States railroad. 304-5. illustration
King class visit, but mainly earlier (including LNWR) visits from British locomotives

No. 422 (15 October 1927)

Large tank locomotive for South Africa. 307. illustration
4-8-2T built by Avonside Engine Co. Ltd

Metropolitan Ry. 307
The twenty 1,400 H.P. electric locomotives were to be given names, mostly of famous personages associated with the district served by the line, such as Oliver Cromwell, Wiltiarn Penni, Benjamin Disraeli, John Hampden, John Lyon, Lord Byron, Sarah Siddons, George Romney, Sir Francis Drake, Edmund Burke, Sir Ralph Verney, Charles Dickens, John Milton, Sir Christopher Wren, Dick Whittington, Michael Faraday and John Wycliffe. The first to be christened is in traffic and bears the name Florence Nightingale. The locomotive shown at the Wembley Exhibition is to be B.E.E. 1924. Another will be called Sherlock Holmes, whose fame centred in Baker Street.

4-8-0 goods locomotives – Queensland Government Rys. 308. illustration
Twenty five locomotives of the 4-8-0 type, with bogie tenders, were shipped, fully erected, from the Tyne to Brisbane for service on the Queensland Government Rys. They were built at the Scotswood Works, Newcastle by Sir W.G. Armstrong, Whitworth & Co. Ltd., to the requirements of  R.J Chalmers, chief mechanical engineer.

Obituary. 308
Death of E.F.S. Notter, who was locomotive superintendent of the London district of the Great Northern Ry. for twenty-five years. He died on 21 September 1927 in the North Middlesex Hospital, where he had been a patient for several weeks, and was sixty-eight years of age. He commenced work on the railway at Doncaster when he was eighteen. From there he went to Colwick where he had charge of the locomotive department for the Nottingham district, and thence to King's Cross, from which he retired in 1924. Mr. Notter was deeply interested in engineering which, in addition to being his work, was his hobby, and he was a very clever model engineer.

E. C. Poultney. Decapod locomotives — Western Maryland R.R. 308-9.  illustration
Twenty 2-10-0 type engines built by Baldwin Locomotive Works for heavy freight working.

L.M. & S. Ry. three-cylinder compound locomotive. 310. diagram (side elevation)
4P compound 4-4-0

London, Midland & Scottish Ry. (L. & N.W. Section). 310.
The following additional Royal Scot class 6 4-6-0s ex North British Locomotive Co. were in service on this section :-Nos. 6103-4, 6107-16 and 6133-8. Others of the same type in service as follows :-Northern division, Nos. 6127-8 and 6131-2; Midland division, Nos. 6129-30. These bring the total of the type so far delivered up to 31. New 2-6-0s up to No. 13085 have been completed at Crewe. Latest class 4 0-6-0 ex Barclays' was No. 4374. 0-6-2 side tank coal engine No. 7830 (old No. 3669) had been fitted for working as a rail motor. The following engines had been withdrawn:- 0-6-2 coal tank No. 2362, 0-6-0 DX. goods No. 3402 and 0-6-0 shunting tank No. 3582.

Rebuilt locomotive, District Ry. 311.  illustration
4-4-0T No. 34: fitted with cab; most of condensing gear (including bridge pipe) removed

Great Western Ry. winter train service. 311.
Faster Cornish Riviera Express (four hours to Plymouth non-stop) and Torbay Express (59.5 mile/h average to Exeter)

Institution of Locomotive Engineers,. 312-14.
The first meeting of the winter session, held on Thursday evening, 29 September, in the Council Chamber of Denison House, Westminster, was well attended by locomotive engineers representative of the Home, Indian and Colonial railways, as well as building firms and consulting engineers.
The new President, H.N. Gresley, was supported by Sir Seymour Tritton, the retiring chief officer, Sir Henry Fowler, H. Kelway Bamber, Col. E. Kitson-Clark, C.N. Goodall, and J.C. Sykes (Secretary) .
Sir Seymour Tritton in welcoming the new President referred to the work of the Institution during the past session, and the progress made, while Col. E. Kitson- Clark made a few appropriate and amusing remarks in praise of the Institution's efforts.
Gresley then gave his address from which the following is taken :-
On the termination of the War it was believed that the locomotive building industry would have its books full of orders consequent upon an effort by the British and Foreign railways to overtake the arrears of renewals that had accumulated during the War period. In the past the .home builders had not been solely dependent upon British orders, they had thrived on the requirements of Foreign and Colonial railways; so, in the expectation of an unprecedented demand for locomotives, additional firms who had hitherto not entered the field of steam locomotive construction sought to turn their activities in this direction. Workshops built and equipped for munition work were readily adapted, and it was thought that there would be work for all for a long period. Unfortunately these expectations were not realised and orders were not forthcoming. . Locomotives which in the ordinary course would have been due for renewal during the War and early post war periods were extensively repaired and given a new lease of life as neither money nor material was available in those strenuous times. Prior to the War it was the practice of many of the smaller railways to obtain their locomotives from British builders, but when these small railways were absorbed by the larger groups in 1923, the same policy was not necessarily followed. The amalgamated railways at first were unable to supply demands from their own workshops and continued to obtain a portion of their requirements from the builders, but years of bad trade resulting in decreased revenues and finally the industrial upheaval of 1926 reduced their ability to purchase locomotives to such an extent that comparatively few orders were placed by British railways. The idea was also fostered by some, who should have known better, that it was unnecessary to devote more attention to the development and improvement of the steam locomotive, as it would very quickly be rendered obsolete by the early electrification of the lines.
At this point he reminded the members that this is an Institution of Locomotive Engineers, not just an Institution of Steam Locomotive Engineers; all kinds of locomotives-steam, oil, and electric, are their concern.
It is no part of our policy to perpetuate a kind of locomotive that is not economical. Under certain conditions the electrification of the railway line will result in greatly improved earning capacity; of this there is a notable instance in the Southern railway of England. France and Italy also have made great progress in changing their motive power from steam to electricity, but it must not be forgotten that in those countries coal was costly whilst available water power was undeveloped. It is not simply a case of steam versus electricity, but rather the realisation that the possibility of steam as a motive power has not been fully developed, much less exhausted. Undoubtedly the extension of electrification of railways has urged steam locomotive engineers to renewed efforts to make the steam locomotive more efficient. This has also led to the production of the internal combustion, turbine and high steam pressure locomotives.
At the present time there are great expectations of cheap electric energy, and if these are realised the field for electrification will be extended, but he ventured to think that in the near future such improvements will be made in internal combustion and steam locomotives that they will be able to maintain their position as economical units of transport even as compared with electric traction for many services.
These improvements will (a) enable locomotives to remain available for traffic for longer periods, (b) reduce the cost of maintenance, and (c) greatly improve their thermal efficiency; all tending to less fuel consumption and costs of running. Recently locomotive engineers have bestowed considerable attention on the design of internal combustion locomotives, and much ingenuity has been displayed, but one of the greatest disadvantages is the very high initial cost. In countries where oil is cheap and coal dear, they should prove economical, but it is not so likely that they will displace the steam locomotive in countries where the conditions are reversed.
Turbine locomotives so far produced suffer from the same disadvantage as the internal combustion locomotive—i.e., the high initial cost. It is claimed that a saving in coal consumption of from 20 per cent. to even 50 per cent. can be shown by the turbine engine as compared with the reciprocating engine. A steam reciprocating locomotive burns approximately 1,000 tons of coal per annum, and taking coal as costing £1 per ton on the tender, if we assume a saving in coal consumption approximating 30 per cent., this would represent £300 per annum. If the repairs of the turbine engine cost no more than the reciprocating engine, and a provision of 3 per cent. is made for renewals, and 5 per cent. for interest on additional outlay, it would appear that such a turbine locomotive cannot be regarded as attractive if it cost, say, over £3,000 more than a modern reciprocating steam engine. Supposing a reciprocating engine cost £6,000, a turbine engine should not cost more than £9,000—i.e., an increase of 50 per cent. on the cost of a reciprocating engine. It has, however, to be proved that an economy of fuel of 30 per cent. can be realised and maintained under all conditions of working if the first cost is 50 per cent. higher to make a turbine locomotive an attractive proposition.
He knew it may be said by the advocates of the turbine locomotive that tests had shown fuel economies greater than 30 per cent., but it must be re- membered that these have been on through runs. The ordinary day-to-day work of engines working slow passenger trains, pick-up goods trains and shunting has also to be considered. Can this overall fuel economy under all conditions be realised? In the past very valuable work had been done by the consideration of papers on engine failures-their causes and remedies, the organisation of running sheds, the equipment of efficient breakdown appliances, and similar subjects. Gresley felt that if the Institution is to extend its usefulness and im- prove its status, and thus assist in the revival of the locomotive building industry, it must devote its energies to a greater extent than ever before to the consideration of radical development and improvement in locomotive design. It is hard to live up to a great reputation, but it is incumbent upon British locomotive builders and designers to ensure that other nations do not dislodge them from the proud position they have held since the days of George Stephenson.
British locomotive designers and builders work under disadvatageous conditions compared with engineers of competitive nations. They have not at their disposal any facilities for carrying out experimental scientific research, nor can they obtain the necessary financial assistance to do so. Great credit is due to those enterprising individuals and firms who at their own expense have produced locomotives having radical alterations in design and construction. But with the industry in its present depressed condition, they cannot be expected to do much in the near future—they cannot afford it. Railway companies are in a similar position and have not the funds necessary to build experimental locomotives which may prove to be failures.
British railway engineers produce improvement by a sort of slow evolution; new features are tried and if successful are embodied in new designs. Progress is sure, but it is very slow, and the methods adopted in many cases are empirical rather than scientific.
Since the termination of the War the engineers of British railways have produced locomotives which are undoubtedly improvements upon those previously in service. They have probably reached the maximum power required to handle at the speeds of to-day, without assistance, the heaviest passenger trains that can be accommodated advantageously at platforms; and in the case of goods and mineral trains, the longest that can be received in loops, lay-by sidings or reception roads. Larger and more powerful engines could be produced to conform to the limita- tions of the British load gauge and axle weights, but there does not appear to be any demand at present for such. What is required is not an increase in the power of the engines, but a reduction in the building, maintenance and running costs. The thermal efficiency of the modern locomotive is deplorably low and there is therefore great scope for the attain- ment of increased efficiency.
An elaborate locomotive testing plant exists in America by the aid of which new designs can be thoroughly tested and all necessary data as to per- formance obtained. In Germany there is the Grune- wald Experimental Department of the German State Railway, which is, of course, State supported and financed. There is no such organisation in Britain. It is true that there is a Department of Scientific and Industrial Research, but its activities have not extended to locomotives. What he suggested is re- quired and is essential, if improvements are to be made in steam locomotives. That is the provision by the Government of a national locomotive testing plant under the Department of Scientific and Industrial Research, and controlled by the Engineering Department of the National Physical Laboratory. Use would be made of such a plant by British railway companies, consulting engineers of Colonial and Foreign railways, and locomotive builders.
I t should be remembered that a very elaborate and expensive tank for the testing of the models of warships and other vessels has been provided at the National Physical Laboratory at Teddingtori, of which great use is made by the Admiralty and a number of shipbuilding firms. At Teddington there is also a very fully equipped experimental plant for carrying out highly scientific tests on models of aeroplanes by which the speed, lifting capacity and stability of new machines has been greatly improved. Locomotive construction is one of the most important British industries, and it therefore does not seem unreasonable to suggest that just as experimental plants had been provided by the nation for shipbuilding and other trades, suitable arrangements and organisation should be provided for the testing of locomotives. Appropriate charges would, of course, be made for carrying out such tests.
It would also be desirable to have under the control of the same organisation, a dynamometer car equipped with all the latest recording instruments necessary for carrying out running tests on the railways. He ventured to think that the provision of such a locomotive testing plant would be of national advantage, and that it would result in effecting economies in fuel consumption and the operation of railways. It would tend to unification of design with a consequent reduction in the number of types; it would be a means of testing on a strictly impartial and comparative basis, the most promising of the numerous devices which are put forward from time to time for improving the performance of locomotives. A cordial vote of thanks was proposed by Mr. H. Kelway Bamber, and seconded by Sir Henry Fowler, who heartily endorsed the proposals of the President for a national testing plant for locomotives, but was of opinion that each of the railways should have its own dynamometer car.

The "Royal Scot" express, L. M. & S. Ry. 314

Famous British and Canadian locomotives bear same names. 314-15.

Variable power brakes for goods trains. 315. 2 diagrams

G. Reder. Locomotives of the Madrid, Zaragoza and Alicante  Ry.: Locomotives of the former Zaragoza, Barcelona and France Ry. 319-20. 2 illustrations

Brewer, F.W. Modern locomotive superheating on the Great Western Railway: its application to tank engines. 320-2.
The fitting pof a Schmidt superheater to a LB&SCR 4-4-2T is often seen as a key development in superheating in Britain, but Brewer does not consider that this was significant for Swindon.
The 2-4-2T type had 17 in. by 24 in. cylinders, and 5 ft. 2 in. coupled wheels, and were known as the 3600 class. They were built with straight-barrelled Belpaire boilers, the steam pressure of which was 180 psi., the grate area 21.35 ft2., and the total heating surface 1561.65 ft2. The first engine was constructed in 1900; twenty others were turned out in 1902, and ten more in 1903. In working order the engines each weighed 64 tons 12 cwt. After 1909, they were gradually provided with taper boilers and superheaters. These boilers were 10 ft. 3 in. long, and had outside diameters of 4 ft. 51/8 in. and 5 ft. 0½ in., and carried a pressure of 195 psi. The superheaters first fitted to this class were of the 12-72 kind; that is to say, they had twelve large fire tubes and seventy-two superheater steam tubes. The heating surface of the latter was 172.87 ft2, while the total for the whole boiler was 1142.34 ft2, and the grate area 20.35 ft2. With the coned boilers, the engine weight was increased to 66 tons 6 cwt. When overhauled, the 3600s were equipped with 6-36 apparatus, the superheating area of which was 83.93 ft2. These engines were built for branch line and similar work, and had a tank capacity of 1900 gallons.
The 4-4-2Ts were designed chiefly for working semi-fast main line stopping trains. They are comparatively large tank engines, weighing 75 tons, and having 6 ft. 8½ in. coupled wheels and 18 in. by 30 in. cylinders. The tank capacity was 2,000 gallons. As the leading bogie, cylinders and driving wheels were interchangeable with the corresponding parts of the County 4-4-0 tender engines, these 4-4-2Ts, which were fitted with taper boilers when new, were commonly called the County tanks, or, alternatively, the 2200 class. The boilers, however, were slightly smaller than those of the tender engines, the outside diameters being 4 ft. 51/8 in. and 5 ft. 0½in., as compared with 4 ft. 10¾ in. and 5 ft. 6 in., but the length, 11 ft., was the same as that of the County type boilers. The pressure was at first 195 psi.; the total heating surface was 1517.89 ft2, and the grate area 20.35 ft2. The 2200 class consisted of thirty engines, of which ten were built in 1905-6, ten in 1908-9, and a further batch of ten in 1912. The superheating of the engines began in 1910, with apparatus of the 12-72 order, which furnished 168.43 ft2t. of steam tube surface. The total heating surface of the boiler was then 1197.87 ft2. Single-row superheaters were later fitted, the number of large flues being six, containing in all thirty-six steam tubes, the latter having an area of 82.20 ft2. With the smaller superheater, the boiler has a combined heating surface of 1348.95 ft2, and the steam pressure was raised to 200 psi.
A variant of the same (outside cylinder) 4-4-2 type, but with 17 in. by 24 in. cylinders, 5 ft. 8 in. coupled wheels, and a smaller boiler, having 1271.86 ft2., a grate area of 16.6 ft2, and a pressure of 200 psi, was built in 1913. The taper boiler with which this engine was fitted was 10 ft. 6 in. long, with outside diameters of 4 ft. 2 in. and 4 ft. 9 in. It was subsequently equipped with a 6-48 superheater, providing a superheating surface of 101.71 ft2, and the total heating surface was altered to 1215.52 ft2. This 4-4-2T was numbered 4600; its weight was 60 tons 7 cwt., and its tank capacity 1,100 gallons. It appeared to have been the only member of its particular class, and was scrapped in 1925.
The tank engines of the 2-6-2T type comprised four classes as follow: the 3100s, with 18 in. to 18½ in. by 30 in. cylinders and 5 ft. 8 in. coupled wheels; the 4400s with 16½ to 17 in. by 24 in. cylinders and 4 ft. I½in. wheels; the 4500s, with 17 in. by 24 in. cylinders and 4 ft. 7½ in. wheels; and the 3900s, with 17½ in. by 24 in. cylinders (which in this case were inside the frames) and 5 ft. 2 in. wheels.
The first example of the 3100 or 5 ft. 8 in. series appeared in 1903. This engine weighed 72 tons 3 cwt., and had a standard No. 2 wagon-top boiler; length of barrel, 11 ft.; outside diameters, 4 ft. 51/8 in. and 5 ft. 0½ in.; total heating surface, 1517.89 ft2.; grate area, 20.35 ft2; and working pressure, 195 psi. The cylinders were 18 in. by 30 in. Eighty further engines were turned out from 1905 to 1908, inclusive. A number of the earlier engines of this class had similar boilers and cylinders, but the later examples have 18! in. cylinders, and standard o. 4 boilers (diameters 4 ft. 1O! in. and 5 ft. 6 in., grate area, 20.56 ft2). The smaller boilers were formerly fitted with 12-72 superheaters, pro- viding a superheating steam tube surface of 182.21 ft2 The present practice, however, is to instal the 6-36 size of apparatus, which has 82.20 ft2 of superheating area. The standard No. 4 boilers have always had fourteen large flues; in some cases these housed 112, and in other instances eighty-four steam tubes. The respective superheating surfaces were 249.69 ft2 and 191.79 ft2, while the total heating surfaces wer~ 1728.05 ft2 and 1670.15 ft2 The latter figures apply to the more recently superheated engines, the modern plan being to fit only the 14-84 apparatus. The newer examples have 200 lb. pressure; they weigh 81 tons 12 cwt., and have a tank capacity of 2,000 gallons. Originally, the water capacity was 1,380 gallons. Having 5 ft. 8 in. driving wheels, the "3100s" are of the mixed traffic variety, being suitable for working either semi-fast passenger or express goods trains.
The 4 ft. It in. 2-6-2's, "4400" class, consist of eleven engines, of which the first was constructed in 1904, and the rest were turned out in 1905-6. They have taper boilers 4 ft. 2 in. and 4 ft. 9t in. in outside diameter, and 10 ft. 6 in. long, with a grate area of 16.6 ft2 Non-superheated, the boilers had a total heating surface of 1272.6 ft2, and a pressure of 165 psi. The tanks held 1,000 gallons of water, and the weight of the engines in running order was 55 tons 15 cwt. When superheated, the 4400s were given an increased pressure of 180 lb. The 6-48 apparatus was in- stalled, the superheating surface being 101.71 ft2, and the total heating surface 1215.52 ft2.; weight as before. These engines, some of which have 16t in., and others 17 in. by 24 in. cylinders, are fitted with 6-36 superheaters when going through the shops. With the 36 steam tubes, the superheating area is 77.64 ft2
The 4500s: seventy-five engines were built from 1906 to 1924. Except that the coupled wheels are 4 ft. 7½in., and that the engines are heavier and have a different wheelbase, the "4500s" are similar to the preceding class. The boilers are of the same size in both classes, and the tank capacity is the same, viz., 1,000 gallons. The superheaters, formerly of the 6-48 order, now have 36 steam tubes, and the particulars given for the 4 ft. I½in. 2-6-2s apply also to the 4500s. The working pressure is now 200 psi while the total heating surface of the 6-36 superheater boiler is 1191.45 ft2 The weight of the 4500s is 57 tons 18 cwt. The cylinders are 17 in. by 24 in. During 1907 to 1910, thirty 0-6-0 tender engines were converted to 2-6-2 side tank engines. The tanks carry 1,500 gallons, and are prolonged to the front end of the smoke box. The cylinders, which are between the frames, are In in. by 24 in., and the coupled wheels are 5 ft. 2 in.; boiler as for the "4400" and "4500" classes; pressure 180 lb.; superheater 6-48, but where renewals have been effected, of the 6-36 standard. These engines are known as the "3900" class, and they weigh in working condition 62 tons 4 cwt.
The 0-6-0 goods tank engines have 17½ in. by 24 in. cylinders and 4 ft. 7½ in. wheels. The boilers, of the domed type, are of the same size as those of the superheated tender 0-6-0s, the maximum outside diameter being 4 ft. 5 in., and the length of barrel 10 ft. 3 in.; total heating surface, 1142.60 ft2.; grate area 15.45 ft2; working pressure 180 psi. The superheaters are 6-36s, having a superheating area of 75.30 ft2. The tanks, which are of wing or pannier form, extend along the full length of the boiler, including firebox and smokebox, and hold 1200 gallons of water. There are at least 100 of these tank engines, which are classed as the 2700s. Their original dates of construction vary from 1896 to 1901. The tanfs were formerly of the saddle kind, those of the pannier type having been introduced about 1910. In working order, the weight of the engines is 46 tons. In 1910, the first of the 2-8-0s (4200 mineral class) was turned out, but the next example was not built until 1912. From then down to 1926, 174 of these eight-coupled tank engines were constructed, making, so far, 175 in all. A considerable number of the earlier engines of this class weighed 81 tons 12 cwt., and had 18½in. by 30 in. outside cylinders; the later engines, however, weigh 82 tons 2 cwt., and have 19-in. cylinders. The coupled wheels are 4 ft. 7½ in. The taper boilers are standard 4, outside diameters 4 ft. 10¾ in. and 5 ft. 6 in.; length of barrel 11 ft.; steam pressure 200 psi. Swindon superheaters of the 14-112 and 14-84 types were installed. Those with the larger number of steam tubes had a superheating surface of 249.69 ft2 the combined heating surface of the boiler being 1728.05 ft2. The 14-84s in some engines had 215.8 ft2. and the total boiler heating surface was 1566.74 ft2, but the latest figure for this latter apparatus (now standard) is 191.79 ft2, and the newer boilers, which have an increased number of the ordinary small fire tubes, have an aggregate heating surface of 1670.15 ft2 The tank capacity of the 4200s was 1,800 gallons, and the grate area 20.56 ft2.
The 0-6-2 engines, which date from 1924, had 18 in. by 26 in. inside cylinders, 4 ft. 7½t in. coupled wheels, and standard 2 taper boilers, carrying a pressure of 200 lb., and having a grate area of 20.35 ft2t., and outside diameters of 4 ft. 51/8in. and 5 ft. 0½ in. by 11 ft. in length.. The engines of this class, of which approximately sixty are now running (built 1924-27) are termed the 5600s. They weigh 62 tons 12 cwt., and are equipped with 6-36 superheaters, the steam tube area of which is 82.20 ft2, while the total heating surface of the boiler is 1348.95 ft2. Water capacity of tanks, 1,900 gallons.
The 2-4-2 tank engines were originally designed by William Dean, but the later 2-4-2s, together with the 2-6-2, 4-4-2, and 2-8-0 engines, as built down to 1922, were brought out by his successor, G. J. Churchward.. Some of the 4 ft. 7½ in. 2-6-2s and 2-8-0s were, however, constructed during the regime of the present chief mechanical engineer, C.B. Collett as also were all of the 0-6-2 tank engines, the latter being of Collett's own design.
In conclusion, it will be gathered that the economy to be obtained by superheating is, other things being equal, governed by the class of work on which the engine is engaged, and not by the type of locomotive, apart from the usual considerations as to the suitability of the latter respecting loads, speeds, curves, and gradients.

Rebuilt goods locomotives, L.M. & S. Ry. Tilbury Section. 325-6. illustration
Nos. 2898 and 2899 were the sole LTSR tender locomotives and were 0-6-0 and had been fitted with Belpaire boilers and modifications to the cabs. Locomotives in original condition.

Fairlie locomotive, Denver & Rio Grande Ry.  326. illustration
Built by the Vulcan Foundry and ptrsented by the Duke of Sutherland to the 3ft gauge Denver & Rio Grande Ry. It was a wood burner, 0-4+4.-0 No. 101 Moutaineer: it worked on the La Veta Pass. It was fitted with the Le Chatelier counter pressure brake. John Moulton travelled with the locomotive to supervise its erection, but stayed in the USA..

New 4-4-0 locomotives, London and North Eastern Ry. 326
An attempt to pre-write history: correct in that built around J39 class boiler; regulator same as K3?, bu Part 2 will be a compound and Part 3 will have a different valve gear to Part 1. The number of the first (234) was correct, but the name County of Hertford was not (Yorkshire was selected)

A.R. Bennett. The Malta Railway. 327-9. 8 illustrations

Rosen diesel hydraulic locomotive. 329
2-4-2 placed in service on a Swedish railway: final drive by chains

Inness, R.H. (unattributed): Locomotive history of the Stockton & Darlington Railway, 1825-1876. 330-1.
2-4-0 No. 98 Pierrmont of 1855; NER No. 1101 and NER No. 1099 at Hopetown Foundary

Household, H.G.W. The Railway Museum, London & North Eastern Ry., York. 332-3.

Engineering Exhibition, Olympia. 1927. 333-4.
Shipping, Engineering and Machinery Exhibition. Exhibitors included: stainless steel and iron: Brown  Bayley's Steel Works of Sheffield; presses with steel plate frames: Henry Pels; pneunatic and small electric tools; auto trucks; electric welding; flame cutting;steam power details; steel; Thos. Firth & Sons Ltd., whose Staybrite steel is stated to possess resistance to corrosion; decorative panelling and structural work, together with ships' fittings, were displayed in this material. Firth's showed stainless steel turbine blading, and examples of their range o tool steels. Bearing Metals. The exhibit of the Hoyt Metal Co., of Putney, was extensive, and nu.mero~s bea~- ings and test samples were shown, including die castings true to 0.001 in., and ready to fit. Fry's Metal Foundry, of Blackfriars, had also instances of high-class die casting. Brass and Copper Tubes. Both the Yorkshire Copper Works Ltd. and Allen Everitt & Co. Ltd. (Smethwick) had very striking exhibits of the various types and qualities of tubes manufactured by them for all purposes, including condensers and locomotive boilers. The Yorkshire Copper Works showed a length of tube of 450 ft. which was 0.005 in. internal diameter, and they state they manufacture anything between this size and 24 in. diameter. Furnaces. An exhibit of great interest was that of The Metropolitan Fuel Co., of Millbank House, who showed Cox's system of flameless combustion. In this method pressure gas and air are passed through a porous brick and burn on its surface, with the result that a very uniform heating area is obtained with considerable economy in gas consumption. The "combustors" are very neatly manufactured as self-contained units, the brick-which is of a large variety of sizes, and can be rectangular, plane circular, or. cylindrical—being fixed in a cast iron container. We understand that the system is being employed for heating railway tyres for shrinking on, and it should be excellent for this purpose. It has also many uses for restaurant cars, owing to its very uniform heat, and it is stated that hundreds of furnaces of this type are being supplied for cooking purposes. At present, the maximum temperature available is 1000°C. in the high pressure type, and 700°C on the low pressure. Models. Bassett-Lowke had one of. their usually interesting exhibits showing the high value, both for advertisement and technical purposes, which is present in high-class scale models of ships, locomotives, factories, etc. Air Compressors. A very complete line of these was shown by Broom & Wade, of High Wycombe, and this included also a number of pneumatic tools. Bernard Holland & Co. (Swiss Locomotive Works) also showed a number of rotary compressors and exhausters, which, we understand, are in considerable demand owing to their high efficiency and small overall size. As will be gathered from the foregoing brief resume of the Exhibition, there was present a con- siderable number of items of interest to railway engineers.

Questions and answers.  336

Question No. 88—State the reason why certain British locomotives, originalfy built with inside bearings to their small trailing wheels, have subsequently had the bearings removed to the outside position. Is it only a case of greater accessibility or are there other more important mechanical considerations?
A—The position of the bearings is often dictated by the requirements of the firebox. To secure more room for this the trailing wheels are usually provided with outside bearings, which also have the advantage of being more remote from the heat of the adjacent firebox. Further, they often conduce to smoother riding.
Question No. 89—An empty wagon, tare 5 tons 8 cwt., while being propelled, with other wagons, from one running road to another, became derailed, all wheels. On examination, this wagon was found to have one pair of wheels defective, one wheel being 2 ft. 11 /16 in. dia., with a good flange, the other wheel being 1/8 in. less in diameter with a worn flange. The large wheel was found to have mounted the metals. Could the difference in circumference of the two wheels be given, also could you say what, in your opinion, would be the effect of the unequal wheels on the running of the wagon?
A.—We very much doubt if the slight difference in diameter of the wagon wheels you mention would cause the derailment. If the newer wheels were tight to gauge and the permanent way narrow, these would probably offer a better explanation.

Correspondence, 336-.

Treffry Viaduct, Luxulyan. Richard Gallsworthy
Having read with interest the article which appeared in June 1922 issue on the Treffry Viaduct, Luxulyan, I recently spent some time examining it and the Carmiars Incline. Besides its use as an aqueduct, the former still has trucks worked across it to the siding which runs off to the north, at the east end mentioned in the article, the old "T" section rails being still in place. I cannot help wondering if the writer of the article had quite sound grounds for saying that the large water-wheel was ever used for working the incline, as it is some distance from the top of it, and in the sheds near it is disused china-clay working machinery, and as one would think that most of the traffic would be down it, the suggestion is that it would be "self-working," that is trucks going down would pull those coming up.
Editorial note.-We believe our correspondent is correct in his deductions, and the water-wheel was used for operating the china-clay working machinery

Front view of Craven (L.B.S.C.) No. 14. Fredk. Wm. Holliday. 336-7
Re Brigg's request for particulars of front view of Craven's (L.B.S.C.) No. 14. Being intimately acquainted with Craven's locomotives, I have drawn the front view of No. 14. I do not suppose there is anyone living now who knows them so intimately. Up to about 1861 Craven built his engines with flat smokebox doors. There were two doors to the smokebox, fastened in the middle by one fastener in the case of the "tanks," and sometimes fastened by two fasteners in the case of the tender engines. These smokebox doors had protecting plates with space between of about two inches. After 1861, Craven built his engines with the usual "dished" doors much the same as the present day engines. Up to about 1861 Craven's smokeboxes generally went down straight, like my drawing of No. 14 but sometimes he waisted them in. After 1861 he more often than not had wings to his smokeboxes, that is, the front plate was spread out. In Mr. Craven's time all the engines had "B" before the number (=Brighton, to distinguish them from the S.E.R.). The Brighton and South Eastern were at one time amalgamated.

Front view of. J.C. Craven tank locomotive No. 14, L.B. & S.C. Ry. (Sketch referred to in Mr. Holliday's letter).

Chronicles of Boulton's Siding. Liverpool and Manchester Railway locomotives. A.R. Bennett. 337
In Chapter V of the Chronicles, entitled "Reputed Locomotives of the Liverpool and Manchester Railway,"
doubt is expressed as to the origin of five 2-4-0 inside- cylinder tender engines purchased by I.W. Boulton from the L. & N.W. Ry. between 1860 and 1870. Mr. Boulton himself believed them to have been Liverpool and Manchester engines designed by Dewrance, but others thought they had been built by Cross of St. Helen's. In summing up between the two views I favoured the Dewrance and Liverpool and Manchester theory, and this opinion is now confirmed to the verge of certainty by Fig. 52 of the Liverpool and Manchester 2-2-2 locomotive Ostrich in British Steam Locomotives from 1825 to 1925, by the late E.L. Ahrons, which was prepared from drawings lent by Sir John Dewrance, son of the old locomotive superintendent of the L. & M. Ry, Comparison with Figs. 7 and 8 of the Chronicles show that the engines bought by Mr. Boulton were simply a coupled form of Ostrich. The contour of the boiler and firebox is the same; there is a safety-valve column near the chimney; a dome over the firebox with the same ornamental cover; the frame, springs and horn-blocks are similar, the number of rivets is the same and they are spaced m the same manner; the strut between the frame and the smokebox is identical, and has in each case eight rivets arranged in two rows of three with a row of two between. The chimney, splasher and side-sheet differ, but these are but minor points. We can, therefore, be practically certain that the 2-4-0 represented in Fig. 7 of the Chronicles was one of the later type of Liverpool and Manchester engines, dating from, perhaps, 1844, just before the fusion with the Grand Junction and London and Birmingham. Since Ostrich had been built at the L. and L Ry's, own shops at Edge Hill it is reasonable to suppose that the 2-4-0 and her sisters originated there likewise.

Factors in the design of steam locomotives. L.A.F.
The article on "Factors in the design of Steam Locomotives" in the August issue in its reference to fireboxes would appear to give colour to the assumption which has often been too easily made, that not only are the Belpaire firebox and direct staying synonymous, but that the alternative to the Belpaire form is indirect or girder staying. This has no doubt arisen from the fact that certain railways adhered to girder stays until they adopted the Belpaire design and therefore hailed it as a marked improvement, which in such cases was undoubtedly true.
It should not, however, be overlooked that other British railways such as the Great Northern were employing direct staying with round topped fireboxes as far back as sixty years ago, if not earlier, and have done so ever since. Compared with this pattern the one advantage of the Belpaire shape would appear to be the larger proportion of stays which are normal to the outer plate, and to balance this are certain fairly obvious disadvantages.
The conclusion which might be reached by the average reader of the article referred to is that the Belpaire has practically ousted the round topped form, but the position surely does not warrant so sweeping an impression. On the L. & N.E. Ry, the majority of boilers built since the grouping, including those of the largest engines in the country, are round topped, and on the Southern Ry. the type is perpetuated in the "King Arthur" and new 4-6-0 goods classes. In Scotland the round topped is in large majority, and on the L. & N.W. Ry, section of the L.M. & S. Ry. also it is at the moment more numerous, but these latter have apparently girder stays and their process of change to Belpaire is an illustration of the cases referred to above.
In America it must be remembered that with the exception of the Pennsylvania R.R. the round topped design is almost universal, so that, while indirect staying is or should be dead, a final decision in the conflict between the two modern forms cannot be said to have been reached.

Reviews. 338.

The British steam railway locomotive, 1825-1925, E.L. Ahrons, Locomotive Publishing Co. Ltd. 391 pp., nearly 500 illustrations. Review signed by CFDM [that is Dendy Marshall].
The observation and study of railway engines possess a fascination which captures the fancy of most boys to some extent, and more or less remains with many of them all through life. For these, this volume provides a veritable feast, and at the same time, for real engineers who take an interest in history, it is a valuable work of reference.
Its author was not only an enthusiast of the first water, but, as a practising engineer, had many opportunities of acquiring information at first hand, and was well qualified to deal with it technically and critically. The most prominent feeling produced in one's mind by a perusal of this fine work, after that of admiration, is that of thankful- ness that he was spared long enough to carry it out, and to leave behind him so admirable a monument. One cannot, however, help experiencing some regret that it did not begin at the very beginning, as the history of the eighteen or twenty locomotives built before 1825 by other engineers than Stephenson cannot be said to be in an altogether satisfactory state, and if Mr. Ahrons had dealt with it in the same competent and felicitous manner as ne has with that of the subsequent engines, the value of the book would have been even greater than it is. But, accepting, as we must, the periodic limitation, we find a work of the most wonderful comprehensiveness and accuracy. Hardly a mistake can be found, nor anything omitted which was worthy of inclusion.
His knowledge of the most minute details of the engines by various makers, more especially during the period when the building was done by private firms who were allowed practically a free hand, is very thorough, and III the case of innovations and peculiarities generally, he gives, time after time both the reasons for their introduction and the results obtained in practice. In matters of criticism, questions of rival merits, and controversial points generally, he is most judicious.
After examining the book in detail, the reviewer has come across scarcely anything with which to find fault, the most important lapse, and that not a very serious one, being one for which the responsibility appears to rest with the editors, and not the author, as will be seen.
With regard to Wilson's Chittaprat on the Stockton and Darlington Ry., the information obtained by Achard, to which Ahrons refers in a footnote, and in which he would have been much interested, has since been made public in a paper read before the Newcomen Society in February last and shows that all four cylinders drove downwards on to the rear axle, anticipating the Royal George.
On page 10 it is said that Seguin in his book "admits that the first application of a multi-tubular boiler to a locomotive was made on the Liverpool & Manchester Ry." This statement is literally true, but a new light has been thrown upon it in another paper read before the same society last April. On turning to Seguin's book, which was published in 1839, we find that, immediately before the passage referred to, he claimed to have invented the tubular boiler, "que ie livrai a l'industrie en 1827." A few lines later, he said: "It was in 1830 .... that the new boilers were for the first time applied to locomotives." The authors of the paper referred to point out that Seguin had actually constructed one himself in 1829, and, of course, knew of the Rocket when writing. Consequently, he must have meant not preliminary trials, but actual industrial working. It appears impossible to escape from this explanation, far- fetched though it seems, and the passage in question cannot therefore be taken as a renunciation of priority. As to whether Seguin's first engine or the Rocket actually was the first to work, that is another matter; the probabilities are in favour of the Rocket, but they were both under construction at the same time.
In the description of the Rocket drawing (Fig. 6), believed to have been the one made in 1836, there occurs a statement which calls for remark. It is called "particularly important in that it indicates the true form of the firebox." Now the true form of the original firebox is a question of considerable interest, which has caused the consumption of a good deal of ink, and a casual reader would take this as expression of the author's belief that the original form is shown here. This may have been his opinion, though it was not his custom to make a definite statement on a disputed point without giving reasons, and one cannot help suspecting a "gloss." But, while it is fairly certain that we have here the true form of 1836, there is always a possibility that the box had been renewed by then, and, as it was separate from the boiler, there would have been no necessity for the shape to be followed exactly.
The great importance of the Invicta as a milestone of progress never seems to be fully appreciated by historians. Although no further developments of the type occurred at the time, the fact remains that she was the first engine with outside cylinders at the leading end, and is in that respect more like the latest development of the locomotive than any of her predecessors, or, of her successors for eight years.
On page 24 there is rather an unfortunate piece of abridgment. The book says that. (1) the first bogie engines built in this country were exported in 1833 to the U.S.A.; (2) the Wylam locomotives of 1815 are stated to have had one swivelling truck; (3) the illustration in Wood shows one of the trucks with a central pin. Now, in the absence of any doubt being cast on (2), or of a suggestion either that Wood's drawing may be wrong, or that the object mentioned may not have been intended for a pivot, it is obvious that the author has been brought perilously near to contradicting statement (1). Fortunately, we know what he did say. If we turn to The Engineer for  23 January 1925, in which this part appeared, we find that he wrote the illustration in Wood "certainly shows one of the trucks with a central pin, but . . . " followed by a passage showing that he did not believe that the trucks turned, which has been omitted. The word "certainly," which has also been dropped out, instead of adding weight, actually takes it away, as it turns the sentence into a concession to the other side; it is equivalent to "I admit," But he gave the matter a good deal of further study; as he went into it at considerable length in a letter in The Engineer of 21 August 1925. After saying that he had waited to consult the whole of the available historical references, and giving a number of quotations, he repeated his opinion that there was no swivelling, and suggested that the "bolt" "which, however, is shown on an outside and not a sectional elevation of the engine .... may have been intended for some outside attachment possibly a crude representation of a foot step." That this last is its true explanation, the reviewer has no doubt whatever. But, whether the trucks turned or not, it is quite certain that Ahrons did not think so.
The history of the next quarter of the century calls for nothing but praise. The evolution of all the details of the locomotive are ably described and discussed. In chapter XI, "Locomotives for Abroad," a mistake occurs into which the author has been led by Young (biographer of Hackworth). Hackworth's engines of 1838 for Nova Scotia are credited with being the first in Canada. But Stephenson & Co.'s  Dorchester, for the St. John's Ry., Montreal, has been forgotten. It went out in 1836.
The credit for the design of the first Metropolitan engines has invariably been given to Sir John Fowler. A new light is thrown on the subject by Mr. Ahrons, who says that Beyer Peacock & Co. had supplied some very sim!lar engines to a Spanish railway two years before, In which, presumably, Fowler would not have had. a hand. In the "Life of Sir John Fowler," on page 171, It says the Metropolitan engines "were designed by Mr. Fowler and Messrs. Beyer & Peacock." One or two of the later ones were sold to the Cambrian Rys., and converted into tender engines.
Apropos of Stroudley's elegant Grosvenor, the reviewer has recollections of seeing some almost exactly similar engines on the North British in his youth, which probably preceded her.
A good deal of space is deservedly occupied by the Precursors and Precedents. It might have been mentioned that some of the former were converted into tank engines. The throw of the coupling rods of the latter, about which Ahrons was uncertain, was 12 in. It is to be hoped that one of them wiIl be given to the York Railway Museum. Stroudley's Gladstone is all very well, but is not typical of the coupled engines of the time.
Chapter XVI, which deals with Train Resistances and Locomotive Performances, 1855-1879, is packed with interesting information, and is a valuable contribution to the subject from a historical point of view.
In dealing with four-cylinder non-compound engines, there was one, in between Haswell's of 1862 and Manson's of 1897, which might have been just mentioned, although it was unsuccessful, and that is the Jarnes Toleman, which was designed by F.C Winby, and sent to the Chicago Exhibition of 1893. Another engine of the early 1890s, perhaps worthy of notice from the point of view of originality, was one constructed at Nine Elms for the L. & S.W. Ry., with an all water-tube boiler. It was illustrated in the technical press at the time, but nothing more was ever heard about it.
In conclusion, the type is excellent, and the almost complete absence of misprints in a book containing such a mass of detail shows how carefully the editing has been carried out. The illustrations cannot be commended too highly. Their profusion adds greatly to the value of the book, because, in addition to all the points dealt with in the text, there is also so much that, thanks to them, goes without saying. By having so many under one cover, it is easy to trace the genesis and development of ideas, ranging from general designs down to small details. To give an example: Fig. 137 shows that Patrick Stirling's Glasgow and South Western engine, built in 1857, is a connecting link between the Arbroath and Forfar engines constructed by Stirling & Co., of Dundee, in 1839 (Fig. 41), which was a remarkable "milestone," and the "Lady of the Lake" class (Fig. 179), The latter retain a vestige of their ancestry in the hoods over the leading wheels. We also see where the hoods over the G.N. Ry. bogie wheels came from. The illustrations include a number of rare types of all periods, especially tanks, many of which must be quite unknown to the generality of readers

The Mollier steam tables and diagrams extended to the critical pressure. English edition by H. Moss. London: Sir Isaac Pitman & Sons, Ltd. 339
The tendency towards increasing pressure and superheat temperature in modern steam practice affords this book a useful place, and although locomotive developments have not yet reached higher steam pressures than 350 lb. per sq. in., the data furnished offers designers a wide field for future advance. The calculations, tables and entropy-temperature diagrams are arranged in a simple and accurate manner, which should satisfy practical requirements and make the book a helpful reference for- the advanced worker in thermo-dynamics.

The best railway stories. London: The Richards Press Ltd., 339
This comprises a very readable collection of witty and amusing railway stories, including many that are new to us, as well as some we have heard before. It will make an interesting companion for railway enthusiasts on a journey.

Thermo-dynamics applied to engineering. Arthur F. Macconochie. London: Longmans, Green & Co. 339
The writer has produced herein a very useful guide to the fundamental principles of thermo-dynamics in a simple and readable manner, illustrating their application to the latest and most modern developments of power generators and prime movers. Section 1 is devoted to a general review of the theories and laws relating to thermo-dynamics. Section 2 gives the application of the principles to steam boilers, engines, etc., whilst Section 3 deals with the thermo- dynamics of internal combustion motors, gas turbines, etc. A selection of worked problems is included to assist students in actually applying the deductions to practical examples.

Elements of machine design. Part 1. W. Cawthorne Unwin and A. L. Mellanby, London: Longmans, Green & Co. 339
In presenting this new edition of such a valuable and well-known treatise on machine design, the publishers require no excuse for their enterprise. The book includes a number of new references and many additions to bring it up to date in all its many branches, ball bearings, general and chain drives, etc., are all now included. Students of mechanical engineering and particularly those interested in machine design will find the volume of great assistance.

Oerlikon Bulletin, No. 75. 339
This bulletin is entirely devoted to the question of turbine design. After briefly reviewing the various developments which have taken place in this direction, a description is given of some of the latest improvements in Oerlikon turbines. Tables and curves are also included, showing the results obtained with units recently supplied.

Garratt locomotives. 339
Beyer, Peacock & Co. Ltd., Manchester, issued an artistically produced thirty-six page publication to illustrate the latest examples of their Garratt type articulated locomotives. The cover depicts in colour one of the new L.M. & S. Ry. Garratts with a typical Scotch landscape as a setting, possibly as a suggestion of the suitability of this type of engine for the Callender and Oban line, or the main line of the former Highland Ry. The designs shown have tractive powers ranging from 15,880 lb. for the South African Rys., 2 ft. gauge, to 69,150 lb. for the Nitrate Rys. of Chili, 4 ft. 8½ in. gauge, at 75 per cent. of the boiler pressure. Beneath each illustration, in addition to the leading dimensions, is an interesting account of the duties and results in actual service of the engine dealt with. At the end of the booklet are a series of photo reproductions showing the Garratt engine at work in the Argentine, Burma, V/est Africa, North West India, Chili, Rhodesia, Sierra Leone and on the South African Rys., as well as the L.M. & S. and L. & N.E. Rys. at home.

Superheaters for locomotives. 340
Pamphlet No. L11 published by the Superheater Co. Ltd., of 195 Strand, W.C.2, gives a fully illustrated description of the M.L.S. auto steam snifting valve and circulating system. This valve automatically comes into action with the blower each time the regulator is closed, and admits a small continuous supply of low pressure steam to the steam chests, cylinders and exhaust passages, emulsifies the lubricant, distributes it properly over the surfaces, and thus prevents the formation of carbonaceous deposits. The working is simple. When vacuum is created by the closing of the regulator, instead of air being drawn in, either down the blast pipe or through anti-vacuum valves, saturated steam is automatically ad- mitted, which not only breaks the vacuum but also circulates through the elements and prevents them being overheated and burnt out. After circulating through the elements the steam carries the lubricant forward in an emulsified form and distributes it evenly over the working faces of the valves and cylinders.

Herbert Morris Ltd., Loughborough. 340
Catalogue illustrating a large range of jib cranes, steam, electric and hand operated.

Sentinel shunting locomotive. 340
In service at Faverdale Wagon Works, L.N.E.R. It bore number 44, and dated 1927.

British Thornson-Houston Co. Ltd. 340
Obtained six months' contract from the Southern Ry. for the supply of Mazda Electric Lamps.

Pressure and vacuum gauges. 340
J. Clayton & Co. Ltd., 49 Queen Victoria Street, E.C.4, 1927 catalogue and price list of pressure and vacuum gauges, etc. As pioneers of the interchangeable gauge movement this firm has built up a very high reputation for their work in this direction: At competitive prices, consistent with good quality, with a guarantee for two years against faulty workmanship, they confidently recommend their gauges to give satisfaction. Various types of gauges are illustrated, and sample gauges will be sent for inspection and comparison. The firm have made a special study of hydraulic gauges, and have conducted many experiments and researches to perfect the details; they manufacture this type of gauge for pressures up to 10 tons per square inch.

Bassett-Lowke Ltd. 340
Well-known model makers and ships' engineers, were opening a new retail branch in Manchester. The premises were situated at 28 Corporation Street, on the right-hand side passing from the Royal Exchange to Victoria Station A magnificent display of models of every description is on view in their windows, and those model enthusiasts in Manchester and district who have not yet had a chance of viewing their various productions will, no doubt, avail themselves of the opportunity of dealing direct with this branch.

Vaughan Crane Co. Ltd., of Openshaw, Manchester. 340
Issued folder embodying typical illustrations of their manufactures of overhead cranes and runways. The cranes range from 150 tons for locomotive works down to 3 cwt. single motor overhead cranes.

London County Council. 340
Accepted tender of G.D. Peters & Co. Ltd., for the supply of 350 car sets of upholstered spring seats for the top decks of their tram cars.

William Beardmore & Co. Ltd., of Dalmuir. 340
Engaged on an order for twenty-five standard six-coupled side tank goods engines for the London, Midland and Scottish Ry, The engines to the designs of Sir Henry Fowler, chief mechanical engineer.

Beyer, Peacock & Co. Ltd., Manchester. 340
Received an order for six locomotives for the Leopoldina Ry of Brazil, and from the Crown Agents for the Colonies a contract for twelve 4-6-0 tender engines for the Ceylon Government Rys.

North British Locomotive Co. Ltd. Glasgow. 340
Repeat order for eighteen 4-8-2 tender locomotives for the Rhodesian Rys. had been placed and thr firm is also to build two 4-6-0 metre-gauge engines for the Jamnagar-Dwarka Ry, of India.

London & North Eastern Ry. 340
Contract with Clayton Wagons, Ltd., Lincoln, for ten Clayton patent steam rail coaches, each carrying sixty-five passengers. As a result of road competition, the L. & N.E. Ry. are carrying on a special campaign to meet it in the industrial districts in the north. It is rumoured the suburban service round Aberdeen is to be worked by rail motors. An order for twenty Sentinel Cammell rail coaches was placed in August, and a further order for rail motors was "to be placed shortly."

No. 423 (15 November 1927)

New 0-6-2 tank locomotives, L. & N.E. Ry. 341. illustration.
With condensing apparatus. N7/2 built by William Beardmore & Co. Ltd.: No. 2646 illustrated .

Metre gauge 4-6-4 tank engine: Bombay, Baroda and Central India Ry. 342-3. illustration, diagram (side elevation)
Built in India at Ajmer Central Workshops to design of W.S. Fraser.

Mumbles Ry. 343
It is expected that the electrification of the Mumbles Ry, at Swansea will be completed by next March. Five two-car trains will maintain a 7½ to 15 minute service, with a schedule speed of 12 miles per hour; each car will accommodate 110 passengers. The overhead trolley system will be used at 650 volts. A sub-station at Blackpill, the middle point of the line, will supply direct current, and this will be entirely automatic in operation. The equipment is being supplied by the Metropolitan Vickers Electrical Co. Ltd., and the rolling stock by the Brush Engineering Co. Ltd. The Mumbles Ry. can claim to be the oldest railway in Great Britain, for it was incorporated in 1804 and opened in 1807. It is 5½ miles in length and extends from Rutland Street, Swansea, along the shore of Swansea Bay to the pier at Mumbles, running alongside the public road for a considerable part of the route. For nearly seventy years' the vehicles were horse-drawn, and for the last fifty years steam tank locomotives have operated the long trains of double-decked cars which carry the holiday makers in the summer.

Higher steam pressure on the L. & N.E. Ry. 343-4. illustration
No. 4480 Enterprise illustrated: 220 psi boiler

"The Fair of the Iron Horse": Centenary Celebration of a famous Amrican Railway. 345-7. 2 illustrations
A circular track was constructed to parade the locomotives and rolling stock. This also formed the location for the non-railway elements in the parade: people on horseback; people in horse-drawn wagons representing the westward movement of people which would lead to the construction of the Baltimore & Ohio Railroad which was initially worked by horse power. Then the historical evolution of the steam power on the railway. This was followed by the visiting locomotives and their trains, including that of the Great Western Railway.

London, Midland & Scottish Ry. (L. & N.W. Section).  347
Latest Royal Scot class three-cylinder 4-6-0s ex North British Loco. Co. to be delivered to Crewe bore Nos. 6117-9, 6121-3, 6139-44 and 6146. Including Nos. 6127-32, which were attached to the Northern division, there were forty-four of these engines in service. New class 4, 0-6-0s had also been delivered to Crewe, as follows:-No. 4375 ex Barclay's and No. 4492 ex North British Loco. Co. The Crewe-built 2-6-0s were all out of the shops and a new series of Class 4 goods had been commenced, Nos. 4437 onwards.
Of the seventy-five R.O.D. 2-8-0 type locomotives, which were recently taken over by the .;L.M.S., a number are being repaired for service, and of these the following were in traffic :-Nos. 9646, 9647, 9649, 9652 and 9653. The second in order was built in 1917 and the others in 1918—all by the North British Loco. Co.
0-6-2 coal side tanks Nos. 7587, 7710 and 7772 old Nos. 3742, 796 and 3769 had been fitted for motor service. Recent withdrawals included the ex-Knott End Ry. 2-6-0T. Blackpool, this being the last of the four Knott End engines to be scrapped. The following ex L. & N.W. Jumbos had also been withdrawn :-Nos. 477 Caractacus, 480 Duchess of Lancaster, and 2189 Avon (6 ft. 6 in. type), and Nos. 424 Sirius and 2158 Sister Dora (6 ft. type). In our article on the Royal Scot train last month, in the list of water troughs on the West Coast route we omitted those south of Tebay.

Cam-operated valve gear locomotive, L.M.& S. Ry. 348-51. illustration, 3 diagrams., table.
Claughton class Alfred Fletcher No. 5908 fitted with Beardmore- Caprotti valve gear

New 15in gauge 4-8-2 type locomotive, Romney, Hythe & Dymchurch Railway. 350. illustration
Built by Davey Paxman

The locomotive history of the Great Indian Peninsula Ry. 364-5. 2 illustrations., diagram (side elevation)
Neilson Ghat locomotives: 0-8-0ST WN 1726-35.

L.M.S. Ry. L. & N.W.R. Section. 365.
Several Prince of Wales class locomotives running with tenders from ROD 2-8-0 type.

Modern British railway practice. 369-72.
Paper presebnted to Belfast Association of Engineers by W.K. Wallace on 19 October 1927. Notes that first Ross pap saftey valve was manufactured in the NCC Workshops in Belfast and was fitted to No. 57. Also notes that no further 0-6-0 type would be added to NCC locomotive stock..

The Portstewart Narrow Gauge Tramway. 372-3. . illusttration
Closed due to bus competition.

30 ton coal wagon, Carrongrove Paper Co. Ltd. 373. illusttration
Supplied by Hurst, Nelson & Co. Ltd. of Motherwell

The "Kitson-Still locomotive. 374
The North-Eastern Group of the Inst. of Locomotive Engineers visited the works of Messrs. Kitson & Co. Ltd. Leeds on Friday, Nov. 4, to make an inspection of the very' intere~ting "Kitson-Still" engine which is now practically finished. A general description of this engine was given in Locomotive Mag. December 1923, together with an arrangement drawing, and the present locomotive is practically identical with this, being of the 2-6-2 tank type with a drive by cranks from the gear shaft on to the orthodox type of coupling rod which connects the three coupled wheels on each side.
The large number of members who attended were received at the works by Lieut.-Col. E. Kitson-Clarke, and Mr. H. N. Gresley, president. An inspection was first made of the working unit of the "Kitson-Still locomotive; which was used for testing and expenmental purposes, and is fitted with a brake. This unit consists of the complete cylinder and drive — the locomotive has eight such cylinders and the starting, by steam, and continued running by oil, was regarded with much interest. The novel principle of the combination of steam and internal combustion seemed entirely justified from an examination of the running of this single cylinder unit, as the employment of steam for starting purposes eliminates the need for any form of clutch, which is recognised to be the weak link m high power internal combustion engines, and so far proved a check upon their employment for heavy locomotive purposes. In practice, the steam portion of the engine is intended to be worked for starting and manceuvring purposes, but to a limited extent it can also be used for assistance in running, if, for example, a short steep bank has to be climbed: After this single cylinder unit had been run, and explained in detail to the members, a very thorough inspection was made of the finished engine, which was on the rollers ready for its final running trials before being passed out for experimental service, probably on the L. & N.E. Ry. The whole of the cylinders, connecting gear, heat regeneration arrangements, cab fittings, etc., were carefully and fully described, to the very great interest and edification of all. The tractive effort of the engine is understood to be 24,000 lb. and the weight in running order about 80 tons. Two tanks are provided, one of which carries 1,000 gallons of water and the other 400 gallons of oil fuel, which is used for steam raising in the boiler, and for the drive on the internal combustion side of the eight cylinders.
The trials of this locomotive will be regarded with the greatest of attention by railway men, owing to the novel principles involved, and Messrs. Kitson & Co. are to be congratulated on this new construction, which reflects in every way the greatest credit, as it must have involved a very large amount of ingenious designing and experimental work.

Correspondence. 374

Early safety valves. E.A. Forward. 374.
Re account of the L. & N.E. Ry. Railway Museum at York, in the October issue of Locomotive Mag.  some observations relative to the two spring-loaded safety valves attributed to Timothy Hackworth. In the first place, Hackworth was certainly not the first to use the direct spring-loaded safety valve on a locomotive, as a drawing of the Murray-Blenkinsop locomotives, published in 1815, shows the safety valves loaded with helical springs.
Hackworth may have devised the multiple plate spring type of valve, as he gives a sketch of one in his notebook dated July 1828, but this valve is of more primitive form, and is, moreover, fitted with an easing lever worked by a string. The Rastrick notebook of 1829, mentioned by Mr. Household, shows this primitive form of valve, including the easing lever, and states that the engine had a weighted lever safety valve as well.
Neither of the two valves at York can be identified with that on the Royal George in 1828 or 1829, but either may have been fitted to it later on. Valves of the same design as the smaller and simpler specimen are shown on original drawings of engines built by Messrs. R. Stephenson & Co. between 1830 and 1833 and they appear to have been largely used at that period as' the "lock-up" valves on locomotives. I should judge the design of the larger valve to be later, 1£ anything, than the smaller one; one like it can be seen on Puffing Billy at the Science Museum, but when it was fitted is not known.

Reviews. 374.

La machine locomotive, Edouard Sauvage. Paris and Liege: Ch. Beranger. London: The Locomotive Publishing Co. Ltd. 8th edition. 398 pp. and 332 illustrations.
The first edition of this excellent work, described as "a practical book giving a description of the parts, and of the working of a locomotive, for the use of engine men," appeared in 1894, and it is a striking fact that it has ?ow reached its 8th edition. Most of the original illustrations have now been replaced by up-to-date examples of locomo- tive design, and superheaters, exhaust steam injectors, and feed water pumps now appear. The book has, however, become narrowed down to an epitome of French locomotive practice, as all illustrations of non-French engines appear to be excluded. The restriction in this direction has, how- ever, certain compensations, as numerous drawings are given of the various standardised details prepared by the O.C.E.M. (l'Office centra le d'etudes de material de chemins de fer) such as leading and trailing Bissell trucks, crank axles, tyre profiles, etc. It can therefore be thoroughly recommended as instancing modern French locomotive practice. The text is clearly written, and the illustrations in general are good line drawings. As mentioned in the introduction, a law of the (French) Ministry of Public Works "compels locomotive personnel to give proof, by certain examinations, that they understand; in these examinations it is not only suffi- cient to show that they can effectively conduct the trains, but they must explain the functioning of the parts of the engine." To enable enginemen intelligently to comprehend the latter, no better book could be devised, and it will perhaps, some day, be translated into English.

Oerlikon Bulletin, No. 76. 374
This is mainly devoted to the question of determination of efficiency of large turbo- generators. Particulars are given there of a method used by the Oerlikon Co. whereby it is possible to determine very accurately the efficiency of turbo-generators too large to run under normal full-load conditions on test bed. For this purpose use is made of leading reactances which permit of the loading of the turbo-generators with ratings up to 40,000KV A. to their full capacity at power factor zero. The same issue contains the results of tests on traction motors for the electric locomotives which are being supplied by the Oerlikon Co. to the Northern Spanish Railway Co.

The Westinghouse Brake & Saxby Signal Co. Ltd.. 374
Received from Southern Ry. Co. an order for power signalling material for London Bridge and Borough Market Junction. The order includes a 311-lever all-electric locking frame, a 35-lever locking frame, and 155 electric point layouts. Four aspect light signals, resonated impedance bonds, and projector type route indicators will be used.

No. 424 (15 December 1927)'

"Pacific" type express locomotive (Class XB), Indian State Rys. 375-7. 3 illustrations, diagram (side & front elevations).
Supplied Vulcan Foundry

Three-cylinder 4-4-0 passenger engine, L. & N.E. Ry. 378-9. illustration, diagram (side elevation).
D49 Shire class. No. 234 Yorkshire illustrated: all names listed, but only numbers for english counties

[Clogher Valley Ry]. 379.
Decision to close passenger service

Magnetic axle tester — Acton Works, Underground Electric Rys. 379.
To detect fractures

Southern Ry. 36-ton steam breakdown cranes. 380-1. illustration
Two supplied by Ransomes & Rapier of Ipswich to specification of R.E.L. Maunsell

R.H. Inness.  (unattributed): Locomotive history of the Stockton & Darlington Railway, 1825-1876. 385-7. 4 illustrations
2-4-0 No. 114 Edward Pease; No. 114 Nunthorpe and NER No. 1115 (former 115 Meynell) and NER 0-6-0 No. 1112 (former 112 Lion) illustrated. Leading dimensions of Peel class long boiler 0-6-0s supplied by R. & W. Hawthorm  in 1856

H.G.W.  Household. The Railway Museum, London & North Eastern Ry., York. 387-9. 2 illustrations
Early rolling stock, including carriages and wagons; permanent way including that from tramways which acted in association with canals and river navigations. Exhibits from Bodmin & Wadebridge Railway and from Stockton & Darlington Railway

Diesel locomotive for Rangoon. 389-90. illustration
2ft 6in gauge four-wheel supplied by Hudswell, Clarke & Co. Ltd. of Leeds.

0-6-0 shunting engines, Sudan Govt. Rys. 390-1. 2 illustrations, diagram (side elevation)
Hunslet Engine Co. Ltd. outside-cylinder 0-6-0T for 3ft 6in gauge Kassala line. One of illustrations shows complete locomotive being lifted onto motor vessel Belpareil at Hull

F.W. Brewer. The economic advantages of high steram pressures in locomotives. 395-7.
Prompted by the use of 250 psi boilers on King and Royal Scot classes and comparable pressure on Canadian National Railway 4-8-4 types and even higher pressures with water tube boilers on the Delaware & Hudson Rialway ex;perimental locomotives. Notes experiments conducted by S.W. Johson and D. Drummond on the effect of boiler pressure on fuel consumption and studies by Professor Goss at Purdue University on coal consumption over a range of pressures.

Transport of milk in bulk. 398. 3 illustrations
Glass-lined cork-insulated tank wagons assembled at Swindon by the Great Western Railway on behalf of United Dairies

L. Derens. "Stephenson" locomotives for Holland Railway Co. 400-1. illustration, diagram (side eleevation)
2-4-0 standard guage locomotives supplied by R. Stephenson & Co. in 1866/7

[South Shields & Marsden Ry.]. 401
Purchase of former N.E.R. 398 class 0-6-0 No. 396 to become No. 5 and replace No. 8, another former N.E.R. locomotive.

Refrigerator cars for the European train ferry. 402-3. 3 diagrams including plan
Supplied by Refrigerated Transit Transport of Berlin for Harwich to Zeebrugge train ferry.

Locomotives of the Egyptian State Rys. 405-7. 7 illustrations