Locomotive Railway & Carriage Review Volume 61 (1955)

CROSTI-BOILERED B.R. 2-10-0 locomotive. Loco. Rly Carr. Wagon Rev., 1955, 61, 86-8. 4 illus., diagr.

H.M. Le Fleming. Malayan and F.M.S. Railways locomotives. -115

Number 756 (August 1955)

P.C. Dewhurst. Commentary on "Railway locomotives down to the end of 1831". 141-2. illustration
Hedley and the eight-wheelers (Pp. 73 & 85-89; Figs. 24, 26, 27 & 28)
Finally perhaps it may be permissible to refer to two connected matters where opinion rather than research is involved. Firstly, in respect to the vexed question of the eight-wheeled "Chapman or Hedley" locomotives— whether the drawings (they are obviously all from the same original) given by Wood 1825, Partington 1826 and Gordon 1832 represent a Chapman or a Hedley locomotive. This matter was extensively treated by the present commentator ("The Engineer" 3 October, 1941) but a fresh approach to the subject may here be given.
If the arrangement of motion, cylinders, boiler-length etc. of "Puffing Billy" (D. Marshall Fig. 26, p. 85) and the broadside view of the sister engine "Wylam Dilly" (here illustrated by the kindness of the authorities of the Royal Scottish Museum, Edinburgh, where the engine is preserved) is studied, the differences between the component parts of the working gear and their position compared with what is shown for the eight-wheeler are seen to be major ones. yet neither necessitated by nor incidental to the change from eight to four wheels. If therefore the present "Puffing Billy" and "Wylam Dilly" represent Hedley's eight-wheelers merely changed to four wheels—as is generally accepted—then in their eight-wheeled form they were not like the drawing of the eight-wheeler in respect to the mechanical parts. This fundamental difference seems explainable only by assuming that the eight-wheeler drawing represents the Chapman engine(s), upon which point it is significant to note that one of the three drawings-that given by Gordon-actually bears the title "W & E. Chapman." The other examples carry no such titles and it will be found that the text references by Wood and by Partington never categorically state the design was Hedleys. The present writer believes the drawings all show the Chapman engine, and that in "Puffing Billy" and "Wylam Dilly " we have the clue to the working gear of Hedleys engines when they were eight-wheelers.
Secondly, respecting D. Marshalls refusal to accept that the eight-wheelers were upon bogies, (this point was also dealt with in "The Engineer" as mentioned above) the present writer would only here say that if the two separate sub-frames were not provided with swivelling motion the truck-bolsters (K in Woods drawing) would have racked themselves loose under the main-frame front and rear cross- "Wylam Dilly" constructed by William Hedley at Wylam 1813 pieces resting upon them. Scrutiny of Wood's drawing shows shading indicating a lateral over-sailing of these cross- pieces beyond the ends. of the truck bolsters under them, thus substantiating-as much as such a poor drawing can- that there was not a close contact between the upper and lower members there. The meshing of the gear-wheels has been suggested as a bar to there having been swivelling action, but the teeth of gear-wheels on such a job as this would not be "machine-cut" but a rough casting merely trimmed, and having ample play to allow for necessary displacement when the trucks swivelled.
Additional pre-"end of 1831" locomotives
There are three possible additional candidates for the pre- "end of 1831" period. One being a locomotive built bv Eason & Dotterer of Charleston, U.S.A. In the U.S. Government Return referred to in the early part of this commentary, in the section concerning the South Carolina R.R., there is recorded a stationary engine by J. Ross of Charleston dated 1838, having the remark appended "From a locomotive built by Eason & Dotterer, Charleston, 1831." The latter firm must have had a capacity adequate for this because it built at least seven other locomotives in Charleston—all for the South Carolina R.R. —at an average of about one a year during 1833-38. This firm seems to have mostly escaped mention by locomotive historians both in U.S.A. and here; even Sinclair in his "Development of the Locomotive Engine," New York. 1907, makes reference only to a Thomas Dotterer as possessing a workshop m Charleston—at which the locomotive "Best Friend'— was rebuilt after its explosion in June 183l. (Sinclair p. 58 and D. Marshall p. 245). Sinclair also refers to a D.H. Dotterer as having been engaged prior to 1850 on the desultory building of locomotives, but at Reading Pennsylvania and thus not concerned in pre-1832 matters at Charleston.
.The second additional locomotive is one by Rothwell, Hick & Rothwell. The engine built by this firm for the U.S.A. named "Pontchartrain," is dated 183I in Whishaw 's tables—where he describes it as for the "New Orleans Rly" —and as the engine appears in the 1839 U.S. Government Return as. in service on the Pontchartrain R.R. from 1832, there is little doubt that Whishaws date is correct. It was a 2-2-0 type having 10in x 18in. cylinders and 5ft. 0in. driving wheels.
The third "possible" derives from Colburn, generally so well informed about U.S. locomotive history, who says ("Recent Practice in the Locomotive Engine," 1860) that a locomotive by Bury for the Petersburg R.R. named "Liverpool" —four-wheeler and having 9in x 18in. cylinders —was imported mto the U.S.in 1831. A Bury engine named Liverpool is shown m the U.S. Return mentioned previously as on the Petersburg R.R., but as working only from 1833; further, m the same Return there appears on the Richmond, Fredericksburg & Potomac R.R. a Bury engme "Roanoke" which that line had purchased from the Petersburg R.R., and as the date given on the purchaser's return is 1832, it is probable that this was the original "Liverpool" of the latter line (where it had already been named "Roanoke") and so was possibly of 1831 build.
Nevertheless there is a certain difficulty in accepting this engme as of 1831, although Colburn was writing before 1860, not because it figures also in dubious lists of the 1890s of Bury's engines, but because no engine having 9in. x 18in. cylmders appears in the only authentic Bury list known to the present wnter. Bury's no. 5 in that list, however, with 8in x 10in. cylinders and 4ft. 6in. wheels, although following numerically after his nos. 3 and 4 to the Liverpool & Manchester and Bolton & Leigh lines respectively and both dated Apnl 1832, was of the small light pattern supplied to U.S. railroads at this time. It may have been completed before nos. 3 and 4, and thus be of 1831 date, although it is considered more likely to have been a year or so later.
Mention should also be made here of a supposed Bury locomotive referred to by T. West in his Paper of 1886 already mentioned. In the Amencan section he says that "'Spitfire' by Bury, Curtis & Kennedy, 1831 [the firm was not so named at that time] was another of the early English engmes sent to America," adding that he saw and sketched it at a large railway works at Scranton, Pa. It is shown as a typical Bury 0-4-0 in his plate XIII, Fig. 8, with the title "Spitfire 1831, S. Carolina R.R. Bury, Curtis & Kennedy, Liverpool."
The only English-built locomotives named "Spitfire" known to have been in the U.S.A. was one of a set of four-wheeled Bury-pattern engines built by Braithwaite & Co., London for the Philadelphia & Reading R.R. and delivered in 1838. These engines were four-wheelers as stated, but they appear—from a contemporary drawing made in the U.S.—to have been originally uncoupled (i.e. 2-2-0 type with equal-sized wheels) and some tradition of this may be the reason why the only survivor, "Comet," was equipped with even-sized uncoupled wheels when prepared for exhibition. This commentator believes there were other such cases, including a few of R. Stephensons. Some of these Braithwaite engines were long-lived, one, named "Comet" being in use until 1879 after which it stood neglected until 1893 when it was "restored" and exhibited at the Chicago Exhibition of that year, being now preserved in the Franklin Institute, Philadelphia. "Spitfire" itself, however, was sold by the P. & R. R.R. about 1849 to a line afterwards part of the Delaware, Lackawanna & Western R.R. (an important station upon which is Scranton) and the engine after further changes in ownership is recorded as finally being dismantled in the 1880s. The last news of this Braithwaite "Spitfire" being. at Scranton makes it probable that this was the engine which T. West saw; either at the works of the railroad or at those of the Dickson Locomotive Works in that town. The conclusion must be that West mistook the Braithwaite for a Bury—with which it was of course almost identical—he probably adding the date 1831 from a knowledge of Colburn's attribution of a Bury engine to the U.S.A. in that year—and so was locomotive history made!
It will have been noticed that an appreciable proportion of the corrections in this commentary concern locomotives built in 1830-31 for America; this arises from the Author (D-M.) having accepted—vide his "Two Essays, Part II"— an account published in 1898 purporting to relate the productions of English locomotive-builders for America. Later knowledge has shown this account to be largely apocryphal.
Finally, this commentator must not omit to acknowledge research amongst north-west of England newspapers etc. of the 1830s by Mr. S. H. Pearce Higgins and by Mr. W. H. Wright of North Wales and their kindness in furnishing him with results affecting a number of matters dealt with in this commentary.


A History of Railway Locomotives down to the end of the year 1831. C. F. Dendy Marshall. Demy 4to, 283 pages, 105 illustrations.

South African 2-8-4T. illustration
The locomotive illustrated, now owned by Clydesdale Collieries Ltd., Coalbrook, O.F.S., was orginially built for the Western Australian Government Railways by Neilson & Co. Six similar locomotives were constructed (Works Nos. 5897-5902) all being taken over and sent to South Africa to ease the locomotive shortage on the Imperial Military Railways during the Boer War. They were afterwards taken into stock by the Central South African Railways, numbered 203-208 and classed "C". Three were sold in 1904,. two to Clydesdale Collieries, Nos. 204 and 208 and 205 to Oogies Colliery, the others being scrapped before Union. The only one still in existence is the one at Clydesdale, No. 204 (Neilson No. 5898) the others having been scrapped. This locomotive was fitted with a new boiler in 1939, the pressure being increased from 160 to 180 lb. sq. in. These engines were found to ride very roughly at speed owing to their small wheels and short connecting rods. The large side tanks carrying some 2,000 gallons of water made the footplate rather cramped as they protruded right into the cab. The C.S.A.R. decided to use them for shunting purposes. until they were disposed of or scrapped.
We are indebted to Mr. R.L. Hardy of Johannesburg for the reproduced photograph and these particulars

No. 759 (November 1955)

The Modernisation Plan. 185-6
J.C.L. Train, Member of the British Transport Commission, delivered an Address to the London Lecture and Debating Society, British Railways (Western Region) in October 1955. While this Address was comprehensive, the Editorial confined its extract to those aspects relating particularly to motive power and rolling stock. After referring to the reasons for the replacement of steam, Train explained that recent electrification developed on British Railways had been under two principal systems, both D.C., viz. the 750v. third-rail system as used on the former S.R., and 1,500v. overhead as employed between Manchester- Sheffield-Wath and from Liverpool Street to Southend. The Southern system is well suited for its special and limited purpose, that is the operation of multiple-unit passenger trains, both local and express, at frequent intervals, and is cheap to install and simple to maintain. Its main disadvantage is that owing to the gaps in the conductor rail at junctions, it can only be used by multiple-unit trains which are long enough to bridge any such gap, unless one is prepared to face the high cost of constructing electric locomotives which contain special devices enabling them to carry on should they become stationary at a gap. The Southern Railway has continued to haul all freight traffic in the electrified area with steam locomotives, apart from using three experimental electric locomotives.
The Manchester-Sheffield-Wath electrification proved far more costly than originally estimated, largely owing to the interruption caused by the war and the subsequent rise in prices, but much more work in the shape of trailing ton-miles is being obtained from both train crews and locomotives than was possible from steam traction.
When we come to the major extensions and new main line electrification schemes proposed under the Modernisation Plan, it cannot be assumed that past practice will be followed. Serious consideration is being given to the use of alternating current at 50 cycles, that is at industria! frequency, taken straight from the national Grid at a relatively high pressure, say 25,000v. or 6,600v. Such current can be transformed at a low cost to any voltage required for traction purposes. It also requires a comparatively small number of sub-stations. On London Transport electrified lines using D.C. at 630v. sub-stations average only 1.73 miles apart, on the Southern Region they average four miles apart. The distance increases on the 1,500v. system to 6.2 miles apart between Manchester and Sheffield, and ten miles apart on the Dutch Railways.
With high voltage A.C. the picture is quite different. For the whole of the lines from London to Liverpool, Manchester and Birmingham only some dozen sub-stations would be required, compared with 70 or so for direct current at 1,500 volts. In short the A.C. system requires a much less costly and complicated distribution system, both as regards sub-stations and switchgear, than is required for D.C. and it also uses a conductor wire with a much smaller cross-section. This yields a great saving in copper, and there is also a most important saving in the weight, enabling the whole of the supporting structures and catenary wires to be lightened and reduced in cost.
Lastly, the experience of the S.N.F.C. with the new electrified system between Valenciennes and Thionville has shown that the power characteristics of A.C. electric locomotives are superior, weight for weight, to those of D.C. locomotives. In fact, so far as can be seen at present, the only real drawback to the use of A.C. is the fact that high-voltage conductor wire requires an appreciably greater clearance from earthed structures than is the case with lower-voltage systems. Owing to the restrictions of the British loading gauge it will often be difficult to obtain this clearance and if A.C. electrification is adopted a larger programme for the reconstruction or alteration of bridges, tunnels and other structures must be faced or some other devices such as reduced voltage over short sections of line be sought.
Train said that he could not forecast what decision the Commission may take; but recent reports on the development of high tension A.C. have been most interesting and mean that careful thought must be given to the choice at this critical stage, when decisions of such importance for the future must be made.
In the opinion of Train future policy will clearly be to a void mixed steam-and-electric or steam- and-diesel working wherever possible and to change over whole areas of the country to the new forms of traction. Only by doing this can the substantial savings be realised that will accrue when it is possible to close down complete steam motive power depots, with all the associated paraphernalia of coaling plants, water tanks, water troughs and so on. The Western Region are preparing plans for eliminating steam on the lines west of Exeter and it is hoped that the initial order for 11 diesel-hydraulic locomotives will provide the data upon which this complete conversion can be worked out. Another scheme being examined is one in the L.M.R. for the replacement of all steam locomotives which work the cross-London freight services over the former North London line. It is also hoped that it will not be very long before steam can be eliminated from Liverpool Street as well, which is most desirable if the City of London's new "smokeless zone" is to be really effective.
Turning to speed of movement it was said that not enough attention has been paid in the past to the important fact that a very large proportion of railway costs are related to time rather than distance. The bulk of expenditure is on wages, and most wages are paid on a time basis. Furthermore, interest and depreciation charges on costly assets, such as locomotives and rolling stock, accrue irrespective of whether the asset is being employed in revenue-earning work or is standing idle. According to the last balance sheet of the B.T.C., the total investment at the end of 1954 was over £100M. in locomotives, nearly £150M. in coaching vehicles, and over £300M. in wagons. Mr. H. H. Phillips, Assistant General Manager of the W.R., not long ago (vide p. 29 of this volume) drew attention to the painfully inadequate proportion of time spent by much rolling stock in usetul work. He pointed out that on British Railways over a million wagons spend each, on the average, rather less than 55 minutes of each day in carrying a load along the running lines. The average revenue-earning employment of passenger train stock, according to Mr. Phillips' calculations, is less than 4½ hours per day. Drivers on an average only spend about 5 hours a day on the footplate of an engine in traffic; and the locomotives spend almost two-thirds of their life in motive power depots or repair workshops.
One of the most hopeful methods of improving efficiency and reducing costs must therefore lie in increasing speeds so as to get more revenue-earning work done in return for the expenditure on wages, interest and depreciation. High running speeds will not of themselves solve the problem of quicker turn- round and utilisation of wagons, but better terminal performance and better performance on the running lines are both necessary if we are to operate on an economic basis.
The main approach to higher speeds is directed at the freight side, where the adoption of continuous brakes is going to make it at long last possible for all freight trains to run at speeds hitherto regarded as the preserve of passenger trains. It has been assumed for the purposes of the Modernisation Plan that high-speed passenger and freight trains will in future run on the same tracks without serious detriment to head-way. This will lead to maximum track use and it will eliminate, or at any rate reduce, the need to segregate the two types of train on separate running lines. Tentative conclusions are that for express passenger trains average start-to-stop speeds of about 75 m.p.h. should be the target. This will require maximum speeds of 100 m.p.h., perhaps rising even higher, to say 120 m.p.h. at certain favourable locations. For freight trains maximum speeds of 60 m.p.h. are envisaged with average speeds of 45 m.p.h.; and for mineral trains maximum speeds of 55 m.p.h. with average speeds of about 40 m.p.h. These speeds incidentally are the highest that can be planned without involving reconstruction of the whole present stock of four-wheel wagons. To enable such speeds to be run changes in available motive power will be required. Both diesel and electric locomotives of the future will tend to be of the mixed-traffic type, capable of high running speeds. Mr. Train thinks that the heavy mineral locomotive of today with its low maximum speed will gradually disappear from the scene. The next step will be to get the track into condition for these higher speeds. At many places the formation and ballasting will require strengthening, and drainage will have to be improved. A national survey is being undertaken of permanent speed restrictions and a schedule prepared of those which can be eliminated, or whose severity can be mitigated, in return for a reasonable outlay.

Austrian Federal Railways 4-8-0. 186. illus.
The photograph reproduced illustrates a 4-8-0 locomotive of the Austrian Federal Railways, series 33 (formerly 113). This class has cylinders 560mm x 720 mm. and coupled wheels of 1,740 mm. The boiler, which is pressed at 15 atms. has an evaporative heating surface of 217.9 m2 and the grate area is 4.47 m2. These engines, which are designed to work at a maximum speed of 90 km/h., have a total weight in working order of 85.16 tonnes, of which 59.44 tonnes ranks as adhesive weight. The tender has space for 7.44 tonnes of fuel and 27 m2 of water. The photograph and particulars have been kindly forwarded to us by Herr Adolf Hofbauer. As will be noted the locomotive is fitted with a Giesel ejector.

B.T.C. Appointments. 186.
The British: Transport Commission announce the following appointments on their Central Staff: Operating & Motive Power Department, Mr. G. K. Lund, Assistant District Motive Power Superintendent, Edinburgh, to be Assistant (Motive Power), Research Department; Mr. J. C. Loach, Development Officer, (Vehicle & Track Testing), Derby, to be Superintendent (Vehicle & Track Division), located at Derby.

E.E.C. "Deltic" diesel-electric locomotive. 187-90. 4 illus., 3 diagrams (including side elevation section), plan
On page 190 there is an interesting gathering of British Railways officials and English Electric top brass at the roll-out of the Prototype. From BR: K.W.C. Grand, John Collins, D. McKenna and J.W. Watkins.

"Austerity" 2-8-0 locomotives in Sweden. 190. illustration
Modifications made in Sweden included a new cab, safety valves, turbo-generator. Locomotives were purchased from Holland and were working Halmstead to Nassjo line. See also letter from L. Derens.

New coach for the Royal Train. 191.  3 illustrations
To accommodate Prince Charles and Princess Anne.

British Railways. 191

"31" class 2-8-4 locomotives for East African Railways. 192-3. illustration, diagram (side elevation)
Vulcan Foundry

Personal. 192
E. Theakston appointed London Director Hunslet Group

240 h.p. diesel locomotives for New Zealand. 194-5. 2 illustrations, diagram (side & front elevations, plan)
Seven diesel mechanical 0-4-0 with National M4AA6 six-cylinder engines and Self-Changing Gear transmissions supplied by W.G. Bagnall where W.A. Smyth was the Managing Director.

Electrification of railways. 196-7. illustration
F.A. Manley, Manager Traction Department General Electric Co., presented a paper at a Sales Conference of the North of Scotland Hydro-Electric Board at Lochearn. Mention was made of the 25 kv AC system and the use of mercury arc rectifiers, but with the prospect of semi-conductor systems.

Yugoslav State Railways 2-8-2 locomotive. 197. illustration
P.C. Allen photograph of Bosnische-herzogowinische Landesbahnen (Bosnia-Herzgovinia) locomotive: one of 35 built in Budapest in 1930/1.

Henry T. Crittenden. The Fitch model locomotive. 198. illustration
Held by State Museum, Columbus, Ohio due to a gift made in 1903 by A.N. Whiting. Charles Whittlesey's biography of Fitch published in 1845 [Justice to the memory of John Fitch : who in 1785 invented a steam engine and steam boat, planned, constructed and put in operation the steam boat "Perseverance," of sixty tons, moving at the rate of eight miles an hour, in 1788 (12pp) ] LoC online catalog notes that Fitch manufactured a low pressure steeple type engine in 1796 or 1797.

Appointment. 198.
G.S. Luttrell, former Assistant District Motive Power Superintendent Glasgow South moved to District Motive Power Superintendent, Thornton.

2-8-2 locomotives for Western Australia. 199-200. illustration, diagram (side elevation)
Beyer Peacock sub-contrcted to Robert Stephenson & Co. to the specification of C.W. Clarke Assistant Commissioner (Engineering) and ibpection by J. Hannah. For coal traffic from Collie mines to Perth/Freemantle. Total evapourative surface 1814ft2, grate area 40ft2, two thermic syphons, combustion chamber, 499ft2 superheat, Running numbers 1201-24.

Hudswell Clarke 204 b.h.p. diesel locomotive. 200. illustration
For National Coal Board N.E. Division, No. 2 Area (Hatfield Colliery). Fitted with six-cylinder Gardner 8L3 engines, Vulcan-Sinclair Scoop-control fluid couplings ansd Bostock & Bramley three-speed gearboxes

B.R. diesel traction instruction. 200
A senior instructor had been appointed at the Training College in Derby.

Personal. 200.
A.E. Durrant had left Swindon Works to move to the East African Railways in Nairobi

H.M. Le Fleming. Malayan and F.M.S. Railways locomotives. 201-2. 3 illustrations
P class 4-6-2 used wood fuel until about 1920. Malaysian coal deteriorated rapidly, but was used as fuel from 1915. During WW1 P new class were diverted from Malaysia to India. Sixteen were built (RN 186-201) by North British Locomotive Co. (Queens Park) WN 22505-20 and Kitson WN 5159-62. They had 17 x 24in cylinders, 4ft 6in coupled wheels and 160, later 180 psi boiler pressure. The heating surface was tubes 917.5ft2, firebox 82.5ft2, superheater 217ft2. The grate area was 18.5ft2. Bye-pass valves were fitted, but were replaced by new cylinders with piston valves. During the Japanese occupation thet were sent to the Siam-South Burma Railway. Two Baldwin Mallet 0-6-6-0 locomotives were acquired in 1919 which had been intended for Russia and retained their promenade decks to prevent slipping on ice and these lasted until 1930. They had 13in and 19in by 22in cylinders and 3ft 8in coupled wheels. The heating surface was tubes 1183ft2, firebox 125ft2, grate area 19.3ft2. Boiler pressure 180 psi. THey were used between Port Swettenham and Kuala Lumpur. Twelve Q class 4-6-2 were also bought from Baldwin: these had steel firebioxes and received RN 202-13. They had 17 x 24in cylinders, 4ft 6in coupled wheels. The heating surface was tubes 892ft2, arch tubes 11ft2 and firebox 97ft2; grate are 24.9ft2. They were sent to Siam in WW2.

Long-welded rails. 202.
Installation with concrete sleepers at Crewkerne, Southern Region

B.R. appointment. 202
Gordon Lloyd Nicholson [spelt Nicolson] had moved from District Motive Power Superintendent Stewarts Lane to Modernisation Assistant to General Manager Scottish Region.

C.W. Brett. Welding applied to maintenance requirements. 203-4. illustration
Managing Director of Barimar Ltd

No. 760 (December 1955)

British Railways diesel locomotive orders. 205-6. 2 tables
Engines being supplied by English Electric, Sulzer, Mirlees, Paxman, MAN and Crossley; transmission systems by English Electric, BTH. Crompton Parkinson, Brush, General Electric, Metro-Vickers an Voith Hydraulic; and mechanical parts by English Electric, British Railways, Birmingham Carriage, Bagnall, Metro-Vickers, North British and Clayton. T.A. Crowe, President of the Locomotive Manufacturers Association commented favourably on these plans.

Apprentice school for L.M.R in London. 206
Work had begun on altering a building in Purchese Street, St. Pancras to serve as a training establishment.

Rolling Stock for Netherlands Railways. 207.
N.V. Werkspcor. Amsterdam, Allan & Co, NV., Rotterdam and J. J. Beynes N.V., Beverwijk, had in hand an order for N.V. Netherlands Spoorwegen for building 248 units of electrical rolling stock for passenger transport. This order comprises 47 four-car sets and 30 two-car sets of a new type. Delivery expected to start in the course of 1956.

Canadian National Railways. 207
Placed in service their first double-deck car transport. Constructed by the Canadian Car and Foundry Company, it was one of 25 units ordered by CNR. The new all-steel car accommodated eight vehicles each weighing as much as 4,600 pounds, on two decks equipped with shock absorbing "hold-down" devices. Portable ramps provided with each unit or located at points of handling to facilitate loading and unloading both from ground level and between the cars themselves. Doubling the capacity of present car transports, they permitted the handling of vehicles with greater speed and efficiency, and had electric lights installed to facilitate loading and unloading. Latest air brakes, slack adjusters. coil springs and cast steel under-carriages were also modern features fitted. Designed jointly by the research and development and mechanical departments of C.N.R .. the new car transport  was the largest freight car on the system. Dimensions: 16½ft. high, 10 ft. 8 in. wide and 7S ft. long, (34ft. longer than an ordinary box car).

Potters Bar Widening. 207.
The bottleneck through Potters Bar had always been a handicap on the main line out of King's Cross. The difficulty of making extra tunnels through the treacherous clay soil caused the old GNR to shelve the idea of widening and build the Cuffley loop instead. British Railways decided to tackle the problem in earnest and the quadrupling of the line north of Greenwood Box (near New Barnet) to north of Potters Bar Station had been in progress for three years and the first stage of about. half a mile through Potters Bar Station had been completed. The improvements include the re-siting of the station and goods yard. The new station of pre-stressed concrete construction embodied centrally heated waiting rooms, lock-up garages for the use of season ticket holders and all modern amenities. Three/four-aspect colour light signalling controlled from a new box has been installed by Metropolitan-Vickers.

B.R. Training Scheme. 207.
A concentrated training scheme bv which suitably-qualified engineering graduates entering the railway industry may complete their training after only two years. instead of the former three years' period,  was announced by the British Transport Commission. This scheme of shortened, but intensive, training  was available to all engineering graduates who had successfully taken a full time three years' University or College course.

Second Class on British Railways. 207.
As from June 3, 1956, there will be only two classes of travel—"First" and "Second"-on British Railways, including Continental boat trains. This will conform with the arrangements which are being made by European railways generally to reduce the number of classes on their trains to two, as from the same date. So far as British Railways are concerned, the effect of this is simply to alter the name of "Third Class" to "Second", and to abolish the former designation. In recent years, Second Class on British Railways has been provided only on Continental Boat Trains to and from U.K. ports, in order to enable uniform through bookings to be maintained with Continental railways. On British Railways, only First Class compartments and coaches will bear numbers and labels on the outside to indicate the class.

Hungarian Transport Development. 207.
Hungary was investing £34.5 million~lVI. in transport development—a 46% increase on the previous year. This was reported to be only the first step in the large-scale reconstruction of the country's transport system, principally the railway network, which would be carried out in the next five years. Railways will go over more and more to diesel and electric traction, and industry has been ordered to achieve increased output of diesel engines. Serial manufacture of the 600 h.p. diesel- lectric locomotive is to be started and the prototype made of a 2,000 h.p. diesel locomotive. The programme of fitting automatic safety devices is to be stepped up 30%. New rolling stock to be added next year includes 55 steam locomotives, 20 diesel locomotives, five electric locomotives, 85 passenger coaches and 1150 goods wagons.

British Railways. 207.
The following new steam and diesel locomotives and diesel railcars had been placed in service.
Eastern Region. 0-6-0 diesel-electric shunter Cl. DJ12/2, No. 11132-33; diesel railcars, motor third brake No. 79044, ariving trailer third, No. 79260; These railcars were for East Anglian services.
London Midland Region. 4-6-0 Cl. 5, Nos. 73091-93; 2-10-0 Cl. 9, Nos. 92056-59; 0-6-0 350 h.p. diesel-electric shunter Nos. 13180-81.
North Eastern Region. 2-10-0 Cl. 9, No. 92060; diesel railcars, motor composite Nos. 79508-9, trailer third brake Nos. 79325-26, trailer third Nos. 79400-1, motor third Nos. 79151-52. These railcars were for use on the Newcastle Middlesbrough service.
Scottish Region. 2-6-0 Cl. 2, Nos. 78045-48; 2-6-4T Cl. 4, Nos. 801I25-26.
Southern Region. 4-6-0 Cl. 4, Nos. 75070-71.
Western Region. 0-6-0 350 h.p. diesel-electric shunter Nos. 13182-87.

Lecture on modernisation. 207.
The London & Home Counties Electric Traction Society arranged for a speaker from the British Transport Commission to give a lecture, illustrated by films, on the British Railways' Modernisation Plan, at Fred Tallant Hall, 153 Drummond Street, London, N.W.1. on 18 February 1956, admission free.

Locomotive utilisation. 207.
The August issue of British Transport Review contains an article by A.W.J. Dymond on Full Employment of Steam Locomotives. The Author raises a number of pertinent points and concludes by saying that in his view future use of steam locomotives lies principally in following two parallel lines of action, both of which derive from the Plan itself. One is to devote some of the new capital expenditure to modernizing a proportion of the steam locomotives and the depots which serve them; the other is to seize the opportunity presented by the necessity to devise new time-tables to suit the diesels and to give the steam locomotives schedules which will entail their operation within their most efficient range, and to link such schedules together to the greatest possible extent.

Hudswell, Clarke diesel for South Africa. 208-10. 3 illus. diagram (side elevation and plan)
3ft 6in gauge 450 h.p. with four axles and jack shaft drive for South African Iron and Steel Corporation. Paxman 12RPHL engine, Vulcan Sinclair scoop control fluid coupling and three speed Synchro-Self-Shifting-Power-flow gearbox. Taken by road to Liverpool where shown being loaded.

Netherlands Railway. 210.
Apart from the Rotterdam service the last steam tram in the Netherlands ceased running on 31 August 1955. It worked between Alkmaar and Bergen aan Zee an was known locally as Bello due the steam bell carried on the engine. One of the locomotives was preserved in Bergen.

Fell locomotive. 210.
Described in Volume 57 page 96. Noted purchase by British Railways and its use on mixed traffic duties.

B.R. corridor composite brake type D.  211-12. illustration
W21135 illustrated: first third composite with four-aside seating in third built Charles Roberts & Co painted in crimson and cream livery

H.M. Le Fleming. Malayan and F.M.S. Railway locomotives. 212-13. 3 illustrations
Photographs of R class oil burning outside-cylinder 0-6-0T No. 12 and L class 4-6-2 No. 217. Text includes M class 2-6-0

G.E.C. Depot at Preston. 213
General Electric had opened a new depot at Magnet House managed by R.G. Galloway.

Appointment. 213
Scottish Area Board announced that James Ness, Acting General Manager had been appointed General Manager of the Scottish Region with effect 21 November 1955 in succession to late A.E.H. Brown.

75 ton cranes for India. 214-15. illus.
Seven 5ft 6in gauge steam-powered breakdown cranes supplied by Cowans, Sheldon & Co. Ltd. to Indian Railway Board. Hopwood boiler fitted.

East African Railways. 215
Revenue from ports administered by East African Railways & Harbours totalled £317,429 for August 1955-£58,207 more than for the same month last year. The total tonnage handled was 387,317 tons, an increase of 35,333 tons. Imports and exports of general cargo were higher than for August last year, although there was a drop of 9,477 tons in coal imports. At Mombasa, where the port was not working to full capacity due to the effects of the United Kingdom dock strike, imports of general cargo increased to 94,901 tons, although general cargo exports were slightly below the August 1954 figure. The import tonnage of general cargo at Tanga was 17,981 tons-a record for that port, and the export tonnage also showed an increase of 3,802 tons over the corresponding month last year. At Dar-es-Salaam increased imports and exports were reported; while at Mtwara there was an increase in general cargo exports of 1,561 tons, although imports dropped slightly. At Lindi, imports were at about the same level as in August last year, but exports were 1,321 tons less, due to the transfer of timber traffic to Mtwara.

Personal. 215
C.S. Douglas, Assistant (Purchasing & Sales), British Transport Commission Central Services, has retired after nearly 49 years' service with the railways and the British Transport Commission; he has been responsible to the Chief Stores Officer for the supervision of the Central Purchasing organisation of British Railways. Mr. Douglas began his railway career with the former L.N.W.R. in 1907 and joined the Purchasing Office set up at Euston in 1910. During WW1. Douglas served with H M. Forces and later resumed duty in the Purchasing Office. In 1931 he was appointed Deputy Resident Storekeeper, Crewe Works. and in 1934 became Assistant Stores Controller (Locomotives). He returned to Headquarters of the L.M.S.R. in 1936, and took control of a Purchasing Section of the Stores Superintendent's Office, and during WW2 was active on many committees. In 1950 he was appointed Assistant (Purchasing and Sales), Stores Department, Railwav Executive Headquarters when the Central Purchasing Organisation was set up. He retained this position when the Stores Department was transferred to the B.T.C. Central Services under the new organisation which came into operation on 1 January 1955..

Preservation of Narrow Gauge Locomotive. 215
The 2ft. 8½in. gauge Furzebrook Tramway of Pike Bros., Fayle & Co., Ltd. near Wareham possessed a six-coupled well tank Secundus., built about 1874 by Belliss & Seeking, predecessors of Bellis & Morcom Ltd. So far as is known, it is the only Birmingham-built locomotive in existence and in 1953 the Birmingham Locomotive Club initiated negotiations to have the engine preserved, on withdrawal from service, in the City's Museum of Science & Industry. Earlier this year, the tramway was sold for dismantling to Abelson & Co. (Engineers) Ltd. who, hearing of the hopes and plans for preserving the engine, generously donated it to the City, the B.L.C. meeting the transport charges from Dorset as their share. The locomotive will not be on view to the public for some months, pending renovation.

International Meeting at Graz. 215
During the second week of May, 1956, an International Railway Meeting will be held at Graz in Styria: at which Mr. A.W.J. Dymond, British Railways (Western Region}, will speak on gas-turbine locomotives. Dr. A. Giesl-Gieslinaen , the inventor of the "Giesl" Ejector, which was described on page 133 of our 1953 Volume, and which has since that date been applied to a number of locomotives, will deliver a Paper on "Ejectors and Boiler Improvements". Dr. Altmann of the Austrian Railways, will address the Meeting on the results ohtained by the use of ejectors.

I.L.E. Paper. 215
On November 16, . G.S. Bingham, M.I.Mech.E., M.I.Loco.E., M.lnst.T. presented a Paper to the Institution in London, on "Railway Breakdown Organisation and Equipment in use on the London Transport System". This Paper reviewed the organisation and equipment used ir. dealing with breakdowns on the railways of London Transport. It dealt with the area of responsibility, the duties of the Report Centre concerned with requests for assistance from breakdown gangs, and described the breakdown lorries and the radio-communication with which each heavy road vehicle is fitted. Details were given of the wide variety of tools and equipment used, with special reference to certain items which were considered to be of particular interest. The methods of dealing with. flatted wheels, defective gears and broken axles were descnbed in detail. Particulars" were also given of the recruitment of staff and the method of operation at an incident, together with .a review of the responsibiliies of the Breakdown Engineer, especially in relation to other services.

Correspondence. 215

F.S. Middleton
The illustration showing the first Japanese-built locomotive and the paragraph relating to it which appeared in the September, 1955 Issue prompted the accompanying photograph taken at Wilderswil, near Interlaken, in May 1955, of one of the first steam rack-and-pinion locomotives used on the Schynige Platte Railway. Two were extant No. 1, shown in the illustration, was built in 1891, the year the Railway opened. No. 5 was placed in traffic in 1894. These locomotives were constructed by the Swiss Locomotive and Machine Works, the Works numbers being 692 and 881, respectively. Leading particulars are: Riggenbach-Pauli rack system; Gauge 800 mm. maximum incline 1 in 4; wheel base, fixed 1,350 mm., total 3,000 mm.; length over buffers, 6,050 mm.; uncoupled wheels, 672 mm. dia.; heating surface, 37.3 m2.; superheating was provided in 1929, the area of the superheater being 7 m2.; grate area, 0.7 m2.; steam pressure, 14 atms.; cylinders, 300.mm. x 550 mm.; weight in working order, 16.7 tonnes; speed, 7-9 km/h.: Tractive effort, 6,600 kg. Until the change-over to electric traction in 1914, the Schynige Platte Railway possessed six of these locomotives. After the electrification Nos. I and 5 were retained as spare. No. I is no longer in service, but No. 5 is used each Spring on the opening of the railway, doubtless for pushing the snow-plough—also seen in the illustration.

Mozambique locomotives. 216-18. 5 illus.

Diesel locomotives for Iraqi. 218. illus.

Midland Class 0 extinct. 218. illus.

F.J.G. Haut. Bo-Bo express passenger locomotives, French State Rlys. 219-21. illus., 2 diagrams

N.C.B. diesel-electric shunter. 221. illus.
Yorkshire Engine Company 400 h.p. for East Midlands Division of National Coal Board for working between Coppice Colliery at Shipley and Nutbrook Sidings on British Railways; replaced ex-Mersey Railway 0-6-4T Cecil Raikes (see Volume 59 p. 104)

Obituary. 221
R.A. Thom, O.B.E., Mechanical Enginneer,  LNER Southern Area, 1934-38. C.E. Williams, C.B.E. Chief Inspecting Officer, Crown Agents 1922-34.

E. Lassueur. The "Mountain" and "Santa Fe" locomotives of the Spanish National Railways: RENFE. 222-4. illus., 3 diagrams (side elevations)