The Locomotive Magazine and Railway Carriage
and Wagon Review
Volume 50
(1944)
Key file
Number 617 (15 January 1944)
The locomotive and research. 1.
Editorial inspired by Sir Harold Hartley's brochure Are you
research-minded? Queries extent to which research can be extended to steam
locomotive, altough mentions Bridge Stress Committee, the superheater and
Chapelon's work.
2-4-2+2-4-2 "Beyer-Garratt" for the Leopoldina Railway (metre gauge). 2-3.
illustration
Four locomotives supplied by Beyer Peacock for service on the Cantagallo
branch which rose 1500 feet to a summit at Coreiro from Portella on the Parahyba
River on 1 in 30 gradients with severe curvature. They had 11 x 20in cylinders;
3ft 4in coupled wheels; thermic syphons; 1103ft2 total heating
surface; 30.3ft2 grate area and Belpaire fireboxes. They had large
ash pans as the engines were intended to burn inferior coal.
The late Mr John George Robinson. 3
Special railway wagons for aircraft. 3
To handle imports of American aircraft received through ports. Aircraft
delivered in 40ft crates which required special well wagons.
L.N.E.R. 3
George Dow, former Information Agent became Press Relations Officer.
Notes diagrams produced by him for use in carriages on both LNER and LMS
railways and his work on a history ofv the Great Central Railway and that
he had been railway correspondent for Design for To-day.
James McEwan. Locomotives of the Caledonian Railway. 4-6. 2
illustrations
SNER 0-4-2 1859-1866 (table): supplied by Neilson (WN 478-82/1859); Peto,
Brassey & Betts WN 48-50/1861-2; Vulcan Foundry (WN 490-3/1862); Neilson
(WN 1161-6/1865 and 1202-7/1866). They had outside cylinders 17 x 20in; 5ft
1½ coupled wheels; 1073ft2 total heating surface;
14ft2 grate area and 120 psi boiler pressure. Illustration No.
65 0-4-2WT on p. 36
P.C. Dewhurst. Midland Railway locomotives: Birmingham
and Derby Junction Rly. 7-8. diagram (side elevation)
Continued from page 183, Vol. XLIX)
There is good reason for supposing the Mather Dixon engines
to have been first deliveredby July, 1839a minute of that month
authorising a payment for " their three engines delivered"; as, further,
no mention is made of any other payment for locomotives received from February
to July, 1839 and Mather Dixon's drawing being dated April, 1838, also the
progress of the line making (this about the earliest likely date for ordering
locomotives, it is very improbable that the other firms would have delivered
before February, 1839. At the other extreme it is known from the letter
above-mentioned from the B. and D. Secretary dated June, 1840 that the Company
had, up to the date of an aocount then recently terminated, 12 engines.
The delivery of Mather Dixons engines can therefore be assumed as May-June,
1839 whilst from the makers numbers of Sharp's engines, which numbers at
the period in question were allo- cated in order of delivery and not, as
is usual, when booking an order, it appears that they must have been delivered
during Sept. and Oct., 1839. The Tayleur engines also must have been delivered
about the same time because there is record of their being in use in December,
1839, but no clue survives of the delivery of the Hawthorns. although it
is evident they arrived about the end of 1839.
Whishaw, in referring to the B. and D. locomotives, makes the ambiguous
statementimmediately after his introductory reference to its
locomotivesthat "There is a peculiarity in Stephenson's
enginesthe· driving wheels are· without flanges"; there being
no Stephenson engines on the B. and D. this pointed piece of information
is left" floating ·in the air." However, in the 1841 Returns there is
mentionreferring to all the engines, and apparently including the 0-4-2
goods engines-that "the driving wheels were all originally without flanges
but those subsequently re-tired have flanges." It may be added that an authentic
contemporary makers drawing of the engines from Mather Dixon's shows flangeless
tyres to the driving wheelsnot as in the case of the same firm's similar
engines to the Grand Junction Rly. and other lines, which had flangehence
it seems that Robert Stephenson had some intervention in their ordering.
.
Whishaw also gives the results of some practical experiments which may be
consulted by those interested; the principal points being that he found the
average steam pressure during the tests was 55 lb. upon the Tayleur and Sharp
engines (the Mather Dixon's and Hawthorn's are not mentioned) from which
it appears. that, as the nominal boiler pressure was 50 lb. in those engines
of which record exists, they must have had the safety valves set at about
60 lb. in order to furnish an average of 55 lb. The fuel burnt upon the engines,
it seems needless to say, was coke and there is record that the tenders carried
about 1½ ton of that fuel; further, although no details of the tenders
supplied with the B. and D. engines are available, it is known that they
had outside bearings. The B. and D. were interested in certain experiments
with coal-burning carried out by the Midland Counties-to be mentioned later-but
took no active part therein. It will be noted that although the line was,
"de facto," a supporter of the six-wheeled locomotive in the " four versus
six wheels" controversy, it had no Stephenson engines and hence was not
definitely pro-Stephenson; in this respect following the Grand Junction Rly.;
this point has its interest because, as will later be seen, its two sub-
sequent partnersthe Midland Counties and the North Midlandwere
most definitely pro-Bury and pro-Stephenson respectively.
Dealing now with the three Tayleur engines; these were Tayleur's Nos. 75-77
delivered during the autumn of 1839, the first being named Derby and
the other two Burton and Birmingham and they are shown in Fig.
1. The three engines were identical with the exception of Birmingham
having 94 2 in. tubes giving 20ft2. less. heating. surface than
the others; they all bemg sister engmes, except for a variation in the cylinder
diameter and number of tubes apparently unaccompanied by other differences,
to ten engines for the Grand Junction in 1838, eleven for the London and
Southampton in 1838 and 1839, four to the Berlin-Saxony Rly. in 1839, three
to the North Midland and four to the Glasgow, Paisley and Kilmarnock early
in 1840 as also one similar, but with 6 ft. 0 in. driving wheels, for the
K.F.N.B. Austria ; 36 in all.
Considerable difficulty exists in adequately illustrating these engmes. Drawings
have appeared accompanying descriptions of similar- sized Tayleur singles
of the period upon other lines, but these are all similar to one published
by W. A. Robertson, London, July 1st,. 1839, entitled "Locomotive Engines
Constructed in 1839 by Messrs. Tayleur & Co.", and this drawing shows
an engine much smaller than the standard Tayleur single of the 1837-40 period,
having a firebox smaller than any of the Tayleur singles listed in Whishaw
and with driving and carrying wheels 5 ft. 10 in. and 3 ft. 10 in. re-
spectively. However, there exist three good guides to Tayleur's practice
in structural features, the first in the diagrams (deriving from the firm)
of eaxly Vulcan Foundry locomotives, exhibited at the Science Museum, London,
the second in the contemporary illustrations coinciding with the London
publication above referred to and, for- tunately, an authentic illustration
of a Tayleur 0-4-2 of 1837 which appeared in "The Locomotive" of August,
1909, pp. 155. These all agree exactly as to constructional features and
details hence it is reasonable to suppose that Tayleur's practice-where not
interfered with from outside as they were not likely to have been by the
B. and D.-was well set; hence as sufficient details appear in Whishaw to
determine the major dimensions it has enabled a drawing to represent the
B. and Derby engines to be developed with necessary corrections to correspond
with the known dimensions. It should be noted that all illustrations known
to the author - including plates published so late at 1839-show the engines
with the two loose-eccentric valve-gear, becoming quite out-of-date by 1839-40
and, as will also be observed, the cylinders are somewhat low down, an
undesirable feature; whilst the connecting-rods and gear, also the round
"decorated" spokes, all bespeak a design somewhat out-dated; hence absolute
confidence cannot be placed in all the details of Fig. 1 which represents
the nearest approximation attainable unless at some time a contemporary drawing
of the actual engines should be discovered.
The most interesting constructional features of the engines, apart from those
already mentioned are:
The outside main frames were of sandwich pattern with bolted-on horn-plates
or axle-guards to all wheels, very closely following the Stephenson practice
of the time, the frame top being straight and whilst the leading and driving
springs were above the frame, the trailing were as usual between the underside
of the "sandwich" and the axlebox. The inside framing seems to have been
composedat least in the forward portionof four members and these
were of some- what shallow plate form connecting the cylinders to the firebox
throat-plate and -inclined throughout their length in accordance with the
cylinder- lines; the slide-bars apparently being independent of the cylinders.
The drawbar-pin was housed in a bracket attached to the back-plate of the
firebox shell through which the whole traction effort was thus transmitted,
so aptly describedand criticisedby D.K. Clark as "pulling by
the firebox" .
The cylinders were inclined upwards towards the rearnotwithstanding
that the piston rods were above the leading axle-the valves being on top
located centrally with the length of the cylinder-bore and operated through
rocking-shafts. Boiler feed was by means of two ram pumps driven from a lug
upon the cross-head assembly, above the slide-bars, with delivery rather
towards the front end of the boiler-barrel.
British Railways exhibition. 8
Stagied, at premises of Dean & Dawson, Piccadilly, an exhibition
of photographs showing the history of railway-owned steamships from the 1850s
down to the present time. In this exhibition could be seen not only the growth
of the familiar Continental and Irish boats, but also their smaller brethren,
many of them paddle-steamers, serving on the Clyde or connecting the train
services with the many islands round our coast.
J.P. Maitland. 8
Award in New Year Honours: the Locomotive Running Shed Superintendent
at Nine Elms, S.R., had been awarded the M.B.E.
Ministry of Supply 2-8-0 tender locomotive. 9.
illustration
No. 7199 supplied by North British Locomotive Co.
L.N.E.R. 9
New B1 type: Nos. 8303 Impala; 8304 Gazelle and 8305
Oryx.
L.M.S. 9
Villagers of Troutbeck use station waiting room as church on Sundays:
their Vicar, Rev. Lawrence Nobbs cycles 3½ miles from Parish Church
in Mungrisdale to conduct service. Press release added war freight trains
rumbling by and John Peel Country.
The North London Railway. 9-11 4 illustrations (including 3 line drawings:
side elevations)
Three 0-6-0 type were purchased from the Northumberland & Durham
Coal Co. No. 28 (with inside frames) had 16 x 20in cylinders; 4ft 6in
coupled wheels; 1009ft2 total heating surface; 11.8ft2
grate area and 120 psi boiler pressure. Nos. 29 and 30 (with outside frames)
had 15 x 22in cylinders; 4ft 7½in coupled wheels; 693.99ft2
total heating surface; 14.43ft2 grate area and 120 psi boiler
pressure. Begins the long story of Adams 4-4-0Ts which had outside cylinders
17 x 24in; 5ft 6in coupled wheels; 1015ft2 total heating surface;
14.72ft2 grate area and 160 psi boiler pressure..
C.M. Doncaster. GWR No. 197. 12-13. 4 illustrations (including 3 line
drawings: side elevations)
Beyer Peacock 2-4-0 of 1862 originally supplied to the West Midland
Railway for use between Wolverhampton, Worcester, Hereford and Neweport.
They had 16 x 20in cylinders, and 6ft coupled wheels. In 1879-81 three were
rebuilt as 2-4-0T for express services, but were rebuilt as 2-4-0 tender
locomotives in "1882 and 1880". Photograph shows No. 197 in this form at
Snow Hill station in Birmingham. Drawings show No. 197 as built and in final
form and as 2-4-0T No. 201.
An old Belgian single locomotive. 13. illustration:
line drawing: side elevation)
Crampton 0-2-4T used on Brussels to Tubize line of Belgian State Railways
in 1841.
Overhead refrigerator car, Canadian Pacific Railway. 14. 3 illustrations
R.B. Fellows. A "slipcoach" on the London & Birmingham
Railway. 15.
Herbert
Spencer when surveying at Wolverton shed to return to
Wembley, but the train did not stop there so he joined the last coach at
Watford and uncoupled it north of Harrow and it came to rest on the embankment
crossing the Brent valley. With the assistance of the Wilesden gatekeeper
he pushed the vehicle into the Brent siding and walked bavk to Wembley. Fellows
cites Spencer's Autobiography (1904). [Based on a Raillway Club paper
presented on 11 October 1941: Ottley 3854]
Correspondence. 16
Miniature railways. Arthur G. Wells.
16. illustratioj
R.A. Whitehead describes the miniature railway in Dreamland Park,
Margate, as being of the 18 in. gauge. This is incorrect. The line in question
is of the 15 in. gauge. It runs round three sides of the Park, and for the
greater part of its length is sandwiched between the backs of the various
side-shows and the boundary fence of the Park, only appearing in public at
the starting terminus and for about a hundred yards at the further end of
the line. Here there was a passing loop whereby the engine could be run round
its train, and return to "Park Station" tender first. Apart from the two
ends of the line, all the rest is single-track, with a short siding about
half-way along the line, leading to the engine shed.
The terminus at "Park Station" was a neat concrete structure with two platforms
and a third track between the platform roads. At the ends of these tracks
was fitted a traverser , When a train arrived the engine was cut off, run
on the traverser, which was then moved over to the centre line. The driver
would then give the regulator a touch, sufficient to run the engine off the
traverser and nearly all the way down the station. Meanwhile, the traverser
was returned to its original position. The engine No. 2, Dreamland Park Railway,
Margate, was then run on to the train, and the train pushed back on to the
traverser until the buffers of the four-wheel coaches touched the stops.
All the points on the line were spring-operated. The other platform at the
station was occupied normally by a four-car train and Atlantic engine No.
2. All movements of the traverser were done by the driver.
Two engines were in use on the line, both being of the 4-4-2 wheel arrangement.
No. 1, which did nearly all the work, was a large engine named Billie.
It was painted green with a polished brass dome. I do not know its builder.
The other engine, Prince Edward of Wales, was built by Bassett-Lowke,
Ltd., of Northampton. It had an eight-wheel tender, but apart from that it
was exactly similar to the Little Giant illustrated on page 53 of
Locomotive Mag. for March, 1942. I now wonder if this could be the first
engine of the Fairbourne Railway, which is mentioned on page 98 of the May
issue of 1942.
I never saw No. 2 in steam, although I visited the line very many times before
the War. I understand that it was used only on very busy days, such as Bank
Holidays. Normally it stood idle in Park Station, looking ornamental.
Crewe Centenary. Walter Laidlaw. 16
In 1904 it was my good fortune to come across an individual who was
greatly interested m L. & N.W.R. locomotives and who knew more about
them than any other person that I have ever met. In 1917, at my instigation,
he approached Bowen Cooke and suggested that he would like to have the list
of Crewe-built engines revised and corrected, as there were many discrepancies
that existed. Permission was readily granted, and all the records at Crewe
were made available for his inspection. Several days had to be spent there
before the job was completed, but entire satisfaction was obtained. The findings
covered the first 398 engines built at Crewe. The 399th one was the first
DX and was 355 Hardman . The records unquestionably prove that the
first new locomotive built at Crewe was completed on 20 February 1845,
and was No. 49 Columbme; the second was 73 Prince (later altered
to Prince Albert), and the third was 19 Princess. These three
were 6 ft. single passenger engines. The first goods engme built there was
78 Lonsdale in January 1846, 5 ft.,. four coupled. In the list there
is one omission, and that is of the 7 ft. Crampton, No. 176 Courier.
The first, 129 Martin, of Crewe build, was a DX, and was built m
September, 1861, and was the 510th engine built there.
Locomotive valve gears. Montague Smith. 16
In the very interesting extract from T.H. Shields' paper on The Evolution
of Locomotive Valve Gears I notice the old error that the Swindon, Marlborough
and Andover Fairlie tank was the first engine in this country with Walschaerts
valve gear has again appeared. C.R.H. Simpson pointed out in "The Locomotive"
a few vears ago that hitherto locomotive historians had overlooked East &
West Jc. Railway (later Stratford-upon- Avon & Midland Jc.) No. 1 of
1876. This was a double- boiler Fairlie engine which had been ordered from
the Yorkshire Engine Co. by a Mexican railway in 1873, and later sold to
the East & West Jc. An illustration of this engine was given in "The
Locomotive" of November, 1911, Regarding" Allan link-motion, I might mention
that all Matthew Stirling's engines on the Hull & Barnsley had this gear
and I think I am correct in stating that Maryport & Carlisle 0-6-0 Nos.
29 and 30, built by the Yorkshire Engine Co. in 1921, were likewise fitted.
Several other valve gears of interest, apparently not given in Shields' paper,
have been applied to locomotives in this country, amongst which may be mentioned
Younghusband's, used on the North Eastern, and the Riekie-McIntosh gear.
The last-named received a trial on the Caledonian by McIntosh.
Review. 16
Quiz-on railroads and railroading. Washington, D.C.: Association
of American Railroads.
How many locomotives are there on the railroads of the U.S.A.?
How many parts are there in a locomotive? What are the costs of steam, electric,
and diesel-electric locomotives? How many manufacturing plants contribute
to the construction of a locomotive? In what cities of the U.S.A. have steam
locomotives been built? Who was Horatio Allen, and what was his contribution
to early railway history? What was the origin of the cowcatcher? How many
drawings are required in the design of a railway passenger car? How many
streamline passenger trains were operating in the U,S,A. in I94I? What is
the world's largest railway library? Who was Casey Jones? What was the
development of automatic couplers? These are a dozen of" the 400 railway
questions asked and answered in this paper-backed volume issued for free
distribution.
Number 618 (15 February 1944)
The braking of trains. 17
Although several brakes are in service throughout the railwayworld,
only two are of prime importance: the air and the vacuum. In a more limited
sphere the steam brake also operates successfully, but, as a rule, on locomotive
stock only. Developments in air and vacuum brake design have been on an extensive
scale the first including electro-pneumatic control for the more rapid
application of the brake shoes, and the latter the Quick Service Application
Valve. The real measure of any braking effort, however, is the adhesion between
tyre and rail; when this is at a maximum, the brake effort should be similarly
high. .
One factor which reduces the value of the brake power the driver has available
is the friction in the rigging. On the majority of vehicles to-day the power
is applied via the shaft, pull rods and cross-beams, all of which absorb
their quota for operation. Were it possible to connect the source of power
direct to the brake shoe and obtain the retardation with a fraction of the
loss sustained to-day, more effective braking at a lower cost would be achieved.
This is actually being accomplished on air-braked stock, but the latter is
now virtually a "foreign" brake for new stock on British railways, and the
vacuum unit does not appear to be quite so adaptable. .
Two directions in which layouts for the vacuum brake may be improved so far
as their arresting potentiality is concerned, are the increasmg of the brake
reservoir capacity, to minimise the fall in vacuum as the piston rises within
the cylinder, and the raising of the vacuum to 24 or 28 inches. Pipe layouts
also might be simplified with many of the bends eased, and not a few cut
out altogether. If all the pivot pins could be provided with smaller clearance
this would assist in eliminating much of the idie motion now so evident,
and the fitting of self-lubricating bearings at each joint, if not too great
a refinement, would result in a higher all-round gear efficiency. .
With the increased speed of pre-war long-distance express trains, the problem
of stopping in a safe, or relatively safe, distance becomes acute, and the
only solution available to-day is to ensure the maximum. pressure between
tyre and shoe throughout the whole braking period, consistent with the adhesion
of the tyre on the rail. The latter is recognised as a varying quantity,
and the brake power applied should likewise change, a higher proportion of
the train weight being thrown into the scales at speed, and gradually reduced
as the velocity diminishes and the coefficient rises. A system which employs
a special form of train retarder has been in operation on the London Underground
Railways for several years past, and appears to function satisfactorily.
While all wheels on coaching stock are normally braked on locomotive stock
the coupled wheels only have blocks fitted as a rule, and it would appear
desirable to brake all wheels bogie, coupled and truck, with, of course,
all the tender wheelsfor stock which is to service high-speed trains.
The braking of bogies and trucks is .only carried out normally where the
prospective duties of the engine justify this refinement, but for speeds
exceeding 80 m.p.h. the fullest measure of brakmg is justified.
Engines of the double-ended type, i.e., 4-6-4, 4-8-4 and similar symmetrical
wheel arrangements, are more effective stopping agents when both carrying
units are braked, especially so where the coupled wheel 'blocks are pitched
at some distance below the axle centre, and it has been found in practice
that the application of the brake in such a design exerts a lifting component
which raises the weight off the driving wheels and axles. Under such
circumstances the adhesive load at the rail is sometimes seriously diminished,
the wheels lock and skid, and a greater distance is .covered before the train
comes to rest, unless terminal buffers achieve what the brake should have
accomplished. The absence of brake power on the bogies .of such an engine
is actually a reflection on the design, since the lifting effect of low-pitched
brake blocks is purely a matter of calculation. See also letters from
C.A. Branson and from Boneham &
Turner Ltd.
New York Central 17.
Twenty-five 4-8-2 locomotives known as class L-4a have been delivered
by the Lima Locomotive Works. These engines are the same as the class L-3a,
illustrated on page 10 of Volume XLIX, but have driving wheels 72 in. dianieter
and ·the diameter of the cylinders increased from 25½ in. to 26
in.
Southern Railway. 17
Of the110 standard 2-8-0 locomotives being built by the Southern Railway
for the Ministry of War Transport, sixty-six had already been completed ..
Lord Leathers recently inspected L.M.S. No. 8681 at Charing Cross
Station
North British Locomotive Co., Ltd. 17
Three new directors had joined the board of the North British Locomotive
Co., Ltd. W. D. Lorimer, son of Mr. William Lorimer, chairman and managing
director of the company; J. B. Mavor, nephew of the late Sam Mavor , is a
director of Mavor & Coulson, Ltd., and Sir Frederick Stewart, chairman
of Thermotank, Ltd., and of Kelvin, Bottomley & Baird, Ltd. For some
time past the North British Loco. Works.production capacity has been engaged
on normal and special work, including the 2-8-0 and 2-10-0 austerity
locomotives.
50 years' progress in design. 18-19.
P.C. Dewhurst. Midland Railway locomotives. Birmingham & Derby Junction Railway. 20-1. diagram (side elevation)
L.N.E.R. re-railing exercise under gas conditions at Picketts Lock. 21.
illustration
J15 No. 7857 partially derailed with train of wagons derailed and
contaminated with mustard gas.
F.C. Hambleton. The first locomotive to be fitted with
Joy's valve gear. 22. 2 diagrams (side elevations)
0-6-0 No. 2365 exhibited at Barrow in summer 1880 for Institution
of Civil Engineers meeting. The locomotive also had a drumhead smokebox and
a ¾in thick copper plate tubeplate. The firehole and ashpan were flanged.
The hollow ashpan was arranged so that water from the firebox sides flowed
across it. No. 930 (also illustrated) was one of the main batch of
Cauliflower 0-6-0s which did not feature the ashpan novelties.
E.A. Phillipson. The steam locomotive in traffic. XII. Rostering of enginemen, depot correspondence, conditions of service for staff in Great Britain. 23-5. 6 tables
Edward H. Livesay. Across Canada in the cab. 25-8. illustration
Toronto to Winnipeg by Canadian Pacific Railroad on the footplate
of the Hudson type locomotives hauling the Dominion. The start from
Toronto involved the use of the booster. The cabs were luxurious and had
seats for three.
Post-War design. 29
Problems identified included hammer blow, flange wear, untreated water
and boiler inefficiency
Stirling Everard. Cowlairs commentary. 29-31. 3
illustrations (drawings: side elevations)
Holmes replaced Drummond but further Drummond types were built with
relatively minor modifications: thus there were further Drummond 4-6-0Ts
and 17in 0-6-0s, but with Stirling-type cabs and his own design of safety
valves in place of the Ramsbottom-type. In 1884 Cowlairs built his first
4-4-0 design with 6ft 6in coupled wheels and 17in cylinders: they were numbered
574-9 and had no names. The Stroudley yellow was replaced by dark brown.
The 592 class 4-4-0s were introduced to replace the Paton Beyer Peacock
2-2-2s on the Edinburgh to Glasgow expresses. They had 18 x 24in cylinders
and were built in 1886/7 and numbered 592-603. Two batches of an 0-4-4T were
built: six (Nos. 586-91) in 1886 and six (Nos. 90-5) in 1888. The Holmes
18in 0-6-0 was constructed between 1888 and 1900. This class became numerically
the largest ever owned by the North British. They had 5ft. 0in. wheels and
18in. x 26in. cylinders, and were somewhat larger than the Drummond 18in.
engines. Tlhe Holmes engines were used throughout the system as the standard
heavy goods locomotive, many being fitted with the Westinghouse brake, and
proving themselves equally useful, on heavy excursion trains. One hundred
and sixty-eight were built between 1888 and 1900. Fifteen, Nos. 663-677,
came from Neilson in 1891, fifteen, Nos. 678-692 from Sharp, Stewart in 1892
and the remainder from Cowlairs.
L.M.S.R. 31
Mr. P.J. Fisher, Assistant District Controller at Chaddesden before
the war, and now Lieut.-Colonel in the Royal Engineers, has been appointed
Assistant Director of Transportation in Italy. Mr. Fisher has had a wide
experience of rail transportation on the L.M.S.
187 L.M.S. men had earned decorations or awards since war began. Fifty-four
of these were won in air attacks while on railway duty on the L.M.S., ninety-
one by staff in the Forces and thirty-five for meritorious 'railway service.
The decorations include a D.S.O., a Croix de Guerre, eight George Medals,
forty-six B.E.M.s, nine D.F.C.s and ten Military Medals.
Correspondence. 31
Springs, a miscellany. C. F. Dendy
Marshall.
Had read the second volume of the late
T. H. Sanders' Springs, a
Miscellany with very great interest. It is a wonderful book. He has
said very kind things about my books, and I am duly grateful, but, on page
951, there is a statement intended to give my views on the subject of the
early history of the bogie, which, at all events, does not represent them
now. It is as follows: "On the authority of Dendy Marshall, the first bogie
which was fitted to any locomotive was designed by ...
John Jervis." In
Two Essays I wrote
practically those words, but they were preceded by these: "Apart from the
possibility of Chapman having put his
invention into practice in 1813." I afterwards discovered the drawings of
Chapman's chain engine in the Derby Museum, and gave reproductions of them
in Early British
Locomotives, from which Sanders took his own illustrations on page
949. Considering that we know the chain engine was built, and that the drawings
agree with those in his Patent Specification, there can now be no doubt that
Chapman was the first man to put a bogie on a locomotive. It would still
be true to say that the first bogie which was fitted to a successful locomotive
was designed by Jervis.
Locomotive valve gears. Harold A. Akroyd
Re January issue reference to locomotives built by this company (Yorkshire
Engine Co., Ltd.). Fuller particulars of the valve gears fitted to those
for the Hull and Barnsley Railway 0-6-0 engines Nos. 70 to 78 and 91 to 96,
and 0-6-0 side tank engines No. 111 to 116 had Stephenson link motion with
the reversing shaft underneath. 0-8-0 engines Nos .117 to 131 were fitted
with Allan straight link motion. and five later 0-6-0 engines, Nos. 157 to
161, also had Allan motion which differed slightly in dimensions from the
0-8-0. The valve gear on the two locomotives built for the Maryport and Carlisle
Railway, already referred to in Montague Smith's letter, was exactly duplicate
of these five.
Manx Northern Railway. Ian MacNab.
Re cover page xxix of The Locomotive Magazine for November,
1919, with an advertisement by the British Commercial Lorry Engineering Co.,
of Manchester, offering for sale a 3 ft. gauge locomotive built by Sharp,
Stewart & Co., with cylinders 11 in x 18 in. stroke; an illustration
of the engine concerned appears with the announcement. Although the illustration
is not too clear in detail, the engine is in all probability No. 1
Ramsey of the late Manx Northern Railway. This engine was sold out
of service in 1918 by its then owners, the Isle of Man Railway, but records
at Douglas do not indicate what actually became the fate of this locomotive.
I am anxious to obtain details of the final history of this Manx Northern
Railway locomotive, and if any of your readers can give further information,
I should be greatly obliged.
Cowlairs Commentary. C. Hamilton Ellis..
In common, I am sure, with many other readers, I am greatly enjoying
"Cowlairs Commentary." I would like, however, to point out that the drawing
of the Helensburgh tank engine No. 1391, previously 495, does not show her
quite accurately in the aspect she bore in 1921. All three of' these beautiful
locomotives were rebuilt with new boilers in 1905, many years before they
were given duplicate numbers in the thirteen hundreds, but your contributor's
otherwise admirable sketch shows the new number in conjunction with the old
Drummond boiler. The latter was always recognisable at once by the spacing
of the safety-valves. Between the old seatings there was space for the spring
of the original Ramsbottom fitting, while in the Holmes and Reid boilers
the lock-up .valves were close together. The 1905 boilers on the three
Helensburgh tanks had 150 psi with a slight reduction in the grate area and
the tube heating surface. Photographs of these engines are rare and I have
never seen a photograph of one on a train. I enclose, however, a picture
of mine showing No. 1390 (originally No. 494 Craigendoran) as she
appeared in the last days of the North British Railway. I painted. the picture
a few years ago and for the sake of old associations depicted her with a
Helensburgh train, though this would have been unusual towards the end. One,
I believe, finished up at Aberfoyle and another at St. Andrews.
Reviews. 31
British Railways in Peace and War.
New facts about the railways were revealed in latest publication.
In addition to a comprehensive survey of facts, a special chapter gives a
behind-the-scenes account of the big task of moving an army, and a double-page
coloured plate provides a visual impression of the vast number of trains
needed to haul a force of the size of that which went to North Africa. A
review of the "Progress Between the Wars." shows that cheap fare journeys
more than doubled, the figures in 1923 being 209,600,000 and, in 1938,
492,400,000. Other facts given show that the same number of miles were run
in 1923 as in 1938, but with 4,300 less locomotives; between 1923 and 1938,
350 new stations and 40 new goods depots were provided; £7,000,000 was
spent on new steamships, and a £40,000,000 programme for London was
commenced. The "Total War Effort" of the railways reveals that the movement
of troops to "invasion" stations required one railway to run 116 special
trains spread over twenty-seven days; the first exports to Russia involved
one railway running 132 special trains between August and November, 194 I.
Another section of this booklet gives an account of the war effort of railway
steamships and marine staffs. Ninety- two railway vessels have been chartered
by the Government for service as, hospital carriers, transports, assault
ships, minelayers and sweepers, ammunition carriers, ack-ack ships and rescue
ships sailing with Atlantic convoys. The last section of the book gives an
indication of the post-war services which are being planned.
Testing locomotive slide valves: ports and pistons.
E.J. Nutty.
Thirty-two page booklet compiled with the assistance of Engineman
W.H. Nutty, explaining the relative positions of cranks, coupling rods,
eccentrics, pistons and valves, and glVlllg useful information for locating
blows or defects in the steam chest or cylinders. The diagrams are clear
and the text is neatly arranged.
Locomotives .of the Metropolitan Railway, 1863-1943.
P. Densham. . 20pp.,
A list of all the steam and electric locomotives that have worked
on this railway, together with dimensions and rough sketches of t.heir outlines,
A useful record of the builders dates and ultimate disposal of the engines
of a line that dunng eighty years had many interesting designs of tank
locomotives, but no tender engines.
A.B.C. of L.M.S. locomotives. Ian Allan and A. B. MacLeod; 52 pp. and cover.
The A..B.C. of·L.N.E.R. locomotives, Ian Allan; 64 pp. and cover.
The authors have already published lists of the locomotives of the
Southern and G.W. systems and the two new booklets deal with the L.M.S. and
L.N.E., so that the series now covers the locomotive studs of all four British
groups. The booklets have been officially corrected and are well illustrated
by official photographs. The first-mentioned contains dimensional diagrams
of the standard classes, whilst the L.N.E. book has a full table of dimensions
of all types. A list of running sheds and a few other interesting notes complete
two well arranged and produced reference books.
Number 619 (15 March 1944)
The future of transport. 33-4
Major-General Gilbert Szlumper paper presented to the Engineeering
Industries Association in which he outlined three future strategies: the
earlier one of unlimited competition between road and rail, government limited
competition and nationalization: the last not being favoured
Conversion of L.N.E.R. "04" class locomotive. 34-5. 2 illustrations.
Thompson conversion of Great Central O4 type to O1 using B1 cylinders
and valve gear and boiler
McEwan, James. Locomotives of the Caledonian Railway.
35-7. 3 illustrations, diagram (side elevation)
SNER 0-4-2T and 2-2-2 Vulcan Foundry delivered four Crewe-type 2-2-2 designed
by Yarrow. These had 7ft 1½
in driving wheels, 16 x 22in cylinders, 1301.75ft2 total heating
surface, 12.75 grate area and 120 psi bouiler pressure. A further locomotive
was constructed at Arbroath but with 16½ x 20in cylinders and 7ft 0½
driving wheels. Four more were ordered from Vulcan Foundry, but the SNER
had been absorbed by the Caledonian before they were delivered In 1870 the
Arbroath locomotive was overhauled at Perth and the Yarrow firebox was replaced
and standard 22in stroke cylinders were fitted. Table gives rebuilding,
renumbering and withdrawal date. Figures: SNER 0-4-0t No. 32 (line drawing);
0-4-2WT No. 65; 2-2-2 No. 461 and CR 2-2-2 No. 316 as rebuilt (ex SNER No.
27). Continued page 71..
O.S. Nock. The "Claughton" class, L.N.W.R.: an analysis
of their design and performance. 38-41. illustration, 4 diagrams.
The leading dimensions of the Star and Claughton classes are compared:
the Claughtons had a higher superheat, but in other respects were smaller.
On 2 and 4 November 1913 dynamometer car tests were performed between Euston
and Crewe and between Crewe and Carlisle on No. 1154 Ralph Brocklebank
hauling 435 tons to Crewe and 360 tons thereafter. The Engineer
reported the results on 6 February 1914. 1500 horsepower was attained
on Grayrigg bank and indicator readings taken on passing Tebay gave 1669
ihp.
Air attacks. 41.
"It can now be revealed" that the railways had experience over 10,000
incidents. A 3½ mile stretch of line near Coventry received forty high
explosive bombs in one night.
Union Pacific R.R. 41
Five 4-8-8-4; ten 4-8-4 and twenty 4-6-6-4 locomotives had beeen ordered
from the American Locomotive Company.
L.N.E.R. 41
J.S. Jones who had been engaged on special duties in the chief mechanical
engineer's department, had been appointed assistant locomotive running
superintendent Western Section, Southern Area. E.S. Bradley,
district engineer Hull had been appointed district engineer
York.
The North London Railway. 42-4. illustration, 2 tables
Adams resigned in 1873 and was replaced by
J.C. Park as Locomotive Superintendent.
He continued to build the 4-4-0T locomotives with slight modifications, notably
the addition of cabs and the removal of the number and coppper cap to the
chimneys. Tables list the running numbers, Bow Works numbers and rebuilding
numbers with dates. Figurec 27 shows No. 48 at Alexandra Palace.
Review. 44
The evolution of railways, 2nd ed. Charles E. Lee.
Traces history back much further than might be expected.
C.M. Doncaster. Old banking engine, London and Croydon Railway.
44. illustration
G & J Rennie 0-4-2 locomotive of 1838/9.
Swiss Federal Railways. 44
Two electric locomotives were under construction for the
Bern-Lotschberg-Simplon line. They had four driving axles and were intended
for hauling express trains
Rapid repair of locomotives. 45; 46. 4 illustrations
One of photographs shows A8 No. 2162 being overhauled: main accent
is on rapid stripping down with tanks of caustic soda being used to clean
the motion and high pressure water being used to clean the frames, etc.
General Montgomery meets railway workers. 45
L.N.E.R. 45
Canadian National Railways. 45
F.C. Hambleton. The first 4-2-2 express loco. 47. 2 diagrams (including
side elevation)
Dean built Wigmore Castle as a 2-2-2 which broke its leading
axle in Box Tunnel on 16 Septdember 1893 and led to it being rebuilt with
a leading bogie: the remainder of the class was similarly rebuilt.
Obituary. 47.
Harold Hume Brindley, Fellow of St. John's College Cambridge and Keeper
of the War Transport Collection,Cambridge Musuem of Archaeology and Ethnology.
Also A.C. Stamer.
Wagons for American railways. 47
4000 hopper wagons under construction using timber for floors and
sides to save weight.
Correspondence. 48
Memories of Havre and Rouen. John Poole.
Re Norman Duncan's reminiscences of Rouen of exceptional interest,
as writer was, at the time or which he writes, stationed at St.
Etienne-du-Rouvray, the C.M.E. Base Workshops. I only made one visit to Petit
Quevilly (then commanded by, if I remember correctly, a Capt. Lyddon, of
the Hull & Barnsley) this being on the occasion of trouble with the brake
ejector of a G.W.R. 43XX class recently turned out from wreck repairs. I
do not remember the well tanks still bearing "Ouest" plates at Quevilly,
and was under the impression that, except for one preserved at. the works
at Sotteville, and another stationed at Pon de I' Arch on a "push and pull"
service, this class was extinct.
There was a Pacific design still earlier than the 231,001 classtwo
engines of this type were turned out by the old Ouestcharacterised
by super-smokeboxes and a peculiar form of conjugated valve-gear. I could
never discover what happened to these two; possibly as relative failures
they were decently interred.
The engines seen by Mr. Duncan at the Gare d'Orleans were probably not ex-Ouest.
but ex-Etat. One with a form of Corliss valve-gear used to work a mid-day
train past Sotteville. Outside cylinder passenger engines were rare on the
Ouest after the Buddicorn period.
Joseph Hamilton Beattie. C. Hamilton Ellis
By way of supplement to my article on Joseph Beattie, I enclose a
copy of a picture recording my impression of Nine Elms running shed in the
early 'sixties [1860s], showing three different types of Beattie locomotive:
Havelock, built 1858, one of the second series of Beattie single
expresses; Medusa, a 5 ft. goods built in 1863, with a single
jet-condenser feedwater heater, and Ajax (1855), one of the double-framed
passenger engines which formed Beattie's first design for the London &.
South-Western Railway, and as running with another form of condenser. In
the original picture, the first-named is painted chocolate, lined out in
red, black and white; the second similar, but without the red lines, and
the third Iridian red with black bands, as used up to the end of the 'fifties.
On the extreme right I have endeavoured to reconstruct their designer from
the old por- trait still at Nine Elms. He is conducting a distinguished visitor
round the shed. Behind is the old roundhouse and the drawing office resplendent
in its new yellow brick. Bereft of its tower, smothered in dirt and with
its windows blown in, this building has survived everything else in the picture.
North London No. "51" class. H.R. Norman.
Can any reader state definitely if the cylinders were enlarged to
17½ in. and coupled wheels to 5 ft. 11 in. in the 1883 to 1890 rebuilding,
or if these enlarged dimensions apply only to the three engines rebuilt between
1902 and I907? My personal opinion is that Nos. 103, 114 and 117 only were
so treated, as the 17½ in. cylinder appears to have been introduced
by Park, and the first new engine to have such cylinders was No. 81, built
in 1896. Furthermore, No. 109, which was rebuilt at Crewe and not at Bow,
seems to have retained 17 in. cylinders to the end.
The North London Railway. C. W. Williams.
Regarding the 4-4-0 tank engines introduced by Mr. Adams in 1868 and
described in the January issue according to official information, Nos. 1,
5, 6, 7, 25 and 42 were rebuilt and not broken up at the dates shown. No.
I was renumbered 125 in November 1906, when It was replaced by a new engine
of similar. type. Details of the six engines noted above-all of which survived
into L.M.S. service-are as set out below:
N.L.R | Date |
L.N.W. |
L.M.S |
|
No. |
Built |
No. |
No. |
Withdrawn |
1 |
4/70 |
2872 |
6443 |
6/25 |
5 |
9/70 |
2804 |
6444 |
6/28 |
6 |
11/70 |
2805 |
6445 |
6/29 |
7 |
9/71 |
2806 |
6449 |
6/29 |
25 |
4/69 |
2819 |
6442 |
7/26 |
42 |
8/74 |
2835 |
6456 |
6/28 |
It will be noted that these engines fit in, as far as the L.M.S. numbering is concerned, with those mentioned in the January article; also that the series became .L.M.S. Nos. 6439 to 6458, inclusive, in the same order in which the engines were built.
Steam or diesel. 49.
The apparently successful .operation of the Diesel engille in road
service has led many engineers to anticipate that equally good results will
be achieved ill the held of rail transport. Whether such an assumption is
justified we are not prepared to say, but a comparison of the two forms of
motive power ill relation to the spheres of servlce available to each, together
with a brief review of the success already achieved by diesel rail units,
may give a pointer to the possjhiljties in the post- war world. The chief
gains claimed for the Diesel are lower cost of fuel consumption, and increased
availability. As the engine unit usually runs but a fraction of the time
dunng which the machine is in actual service; the first claim must be admitted
so long as the relative costs of the two fuels is favourable to the Diesel.
Should circumstances operate adversely to the price of fuel oil. and favourably
to the cost of locomotive coal, it is not difficult to imagine steam becoming
the cheaper motive power. So far as increased availability is concerned,
the I.C. engine also gains a point here over most steal? locomotives burning
coal fuel, but whether this is likely to be a permanent handicap against
the steamer depends on present and future develop- ments. The operation of
rail transport is capable. of resolution into several clearly defined
fields:
(1) Long-distance passenger services.
(2) Local passenger services.
(3) Long-distance goods and heavy mineral traffic.
(4) Short-distance goods traffic.
(5) Shunting operations.
In the first-named, many streamlined light- weight Diesel trains are operating
in the U.S.A. with a fair measure of success, but at a high initial outlay
and a permanent disability of no mean importance, viz.: a lack of flexibility
in the handling of traffic during peak hours. These train sets obviously
accommodate only a limited number of passengers, and seats are frequently
fully booked in advance. With a steam-hauled train, additional coaches may
be provided, and the same locomotive will usually handle the heavier train.
Local passenger transport, however, should provide an excellent held in which
the Diesel car, or twin-car, may operate, and the G.W.R. is using a considerable
number of these to the mutual benefit of the public and the railway company.
Many branch lines, at present dosed down, might afford excellent opportunities
of proving the benefits of this form of traction in competition with road
traffic' most travellers prefer the comfort and rela- tive steadiness of
the rail vehicle, not to mention safety, as compared with the aver.age road
c.ar, and a carefully prepared schedule, with attractive cars operating at
reasonably high speeds dunng the busy hours, would seem to be a worthwhile
expert- ment.
Goods traffic whether main line or local, seems to remain the peculiar province
still of the steam engine, at any rate until such time as the heavy Diesel
engine becomes a more dependable proposition for rail service than it has
so far proved. A fundamental disadvantage under which this unit suffers is
the big drop in tractive power as the rail speed rises; this alone gives
a considerable advant- age to the steam engine, particularly on express goods
traffic such as the Green Arrow handled in pre-war years.
In shunting yards the Dieselof all powers up to approximately 500
b.h.p.has done excellent work, and if properly handled there seems
to be no reason why this held should not become the exclusive province of
the Diesel locomotive. Some few years ago the Baldwin Locomotive Company
designed and built an automatically oil-fired switching locomotive as a reply
to the Diesel shunter, but the latter has done, and is doing, such good work
in this direction that the reversal to steam is unlikely, unless the cost
of repairs and maintenance of the Diesel proves unduly high.
A particularly serious drawback to any of the Diesel engine units, especially
when equipped with electrical transmission, is the prime cost, and unless
this can be reduced appreciably, its future does not seem to be particularly
promising except in the two fields indicated. True, the increased service
rendered per day of twenty-four hours justifies a somewhat higher capital
cost, but hardly three times the price of the corresponding steamer, which
was the average pre-war ratio.
From the foregoing, it would appear that the Diesel is too greatly handicapped
at present in the haulage of ,goods traffic, as well as for long- distance
passenger trains, excepting the limited capacity lightweight streamlined
set with power house built in. For the handling of existing passenger coach
stock the steam engine still holds the field, though in the matter of branch
line traffic the Diesel car is clearly justified, as also is the Diesel
locomotive for shunting operations,
Personal. 49.
Sir Wm. Stanier, M.I.Mech.E., M.I.Loco.E., elected a Fellow of the
Royal Society. He is the second locomotive engineer to be made a Fellow of
the Royal Society, the first being Robert Stephenson. -
Examination of locootives during Black-out. 50-1. illustration,
diagram
LNER Light Tunnel constructed of corrrugated iron
Stirling Everard. Cowlairs commentary. 51-2
Continued from page 31. Since these articles are intended to be a
commentary of Cowlairs affairs rather than a comprehensive history of the
North British locomotives, it is not proposed to consider in detail the
subsequent classes built by Holmes. The reason for this is not only that
full particulars have often been given of all the engines concerned, but
also that Cowlairs for some years became almost an appendage of St. Rollox,
and there is more than a suspicion that two of the North British designs
were directly based upon those of the Caledonian. At the end of 1890 McIntosh
took over at St. Rollox and instilled new life into the Drummond tradition
there, which was already virile enough in all conscience. Cowlairs until
1906 remained one step behind,producing a counterpart to each St. Rollox
type just in time for Mclritosh to go one better.
In 1890 Holmes standardised on the 6ft. 6in. 4-4-0 with 18in. cylinders for
main line work, twenty-four examples being built between 1890 and 1895 at
Cowlairs, namely Nos. 36, 37, 211-218, 262, 293, 312, 404 and 633-642. So
far so good. They were admirable engines of the accepted North British type,
and they put in a great deal of useful work. For the new West Highland line
he introduced a modified design with 5ft. 7in. coupled wheels, of which
twenty-four were also built at Cowlairs, the first coming out in 1892, two
years before the line was ready for traffic. These were Nos. 55, 227, 231,
232, 341-346, 394, 395 and 693-704.
McIntosh was also busy on the 6ft. 6in. 4-4-0, but with a difference. His
machines, the first Dunalastairs, had 18½ in. cylinders and larger boilers
than had ever previously been used on this type of locomotive. With their
ample stearning capacity they were an immediate success, and the North British
engines were completely outclassed. Cowlairs decided that nothing could compare
with a Dunalastair but another "Dunalastair", and as a result the North British
729 class of 4-4-0 with 18¼-in. cylinders appeared, engines almost identical
to those of the Caledoman. Eighteen of these were built in 1898 and 1899,
namely Nos. 729-740 and 765-770. In appearance they followed the usual Holmes
standard, having the Stirlinz cab and details according to Cowlairs, but
the sandboxes were below the running plate instead of incorporated in the
leading splasher as in earlier engines.
Unfortunately in the game of follow-my-leader the initiative is, of necessity,
unequally divided, and McIntosh's reply was a further series of Dunalastairs,
this time with 19 in. cylinders, which' left the Cowlairs people relatively
where they had been before. In 1903 the North British responded with the
317 class, twelve 19 in. engines with the novelty, for Cowlairs, of piston
valves. These machines, Nos. 317-328, were glven a new type of cab, angular
in line, with a slightly cambered roof and one side window on either side.
This cab became the standard for the company thereafter. Nevertheless alterations
in appearance do not necessarily make a locomotive the more suocessful, and
the 317 class, although possibly as good as, was never better than the comparable
Caledonian engines from which they were expected to wrest the traffic on
competitive routes. This type was produced at a time when Holmes was on a
bed of sickness, and William Paton Reid, the Outdoor Locomotive Superintendent
was virtually in oharge. The new type of cab was decided upon because of
Reid's desire to give the enginemen better protection from the weather than
the Stirling design provided.
The North British had built no six-coupled tank engines since the last of
the Drummond Terriers came out in 1878. The time having come when a more
modern machine was required, in 1901 Holmes produced an enlarged version
of the Drummond engines. In the new type the 4ft. 6 in. wheels were retained,
but 17 in. x 26 in. cylinders were used. and, of course, considerably larger
boilers. These engines were contract-built, twenty, Nos. 795-814 coming from
Neilson, and twenty, Nos. 815-834 from Sharp, Stewart. These engines were
used for shunting and short distance goods traffic, while several replaced
the Wheatley tanks on the station pilot duties at the Waverley, where they
are still to be found.
Reid, when deputising for Holrnes prepared a design of small six-coupled
shunting tank in which, for reasons of accessibility, the cylinders were
placed outside. These light shunters had 3ft. 6in. wheels and 15in. x 22in.
cylinders, and were for use in dock areas and industrial districts where
there were sharp curves and weight restrictions. In view of. the nature of
the work they were given dumb buffers. None of the engines came out until
1904. when Reid had succeeded Holmes, but it may be said that thirty-five
were built at Cowlairs between 1904 and 1919. Their numbers were 66,
87,114,116-119,121,130,132, 152, 233-238, 271, 277, 279, 288-290 and 836-847.
During Holmes' term of office a few 0-4-0 pugs by outside contractors were
received by the North British as a result of working agreements. In 1889
a Barclay machine with 3ft. 6in. wheels and 14in. x 22in. cylinders was taken
over and numbered 611. It had been built in 1884. At the same time a Grant,
Ritchie example, built in 1887 and similar in dimensions, was also acquired.
This became No. 612. These came horn Methil Dock. Another engine was received
from the Gartness Coal & Iron Co. at about the same time, but was almost
immediately replaced. This was No. 610, and was also of the pug design. In
1901 a further Barclay engine of diminutive size with 2ft. 11in. wheels and
13in. x 20in. cylinders became North British property and was numbered 835.
Holmes' rebuilding programme, except in the case of one engine, followed
strictly the lines laid down by Drummond. For example the remain- ing Edinburgh
and Glasgow engines of the later main line types, when these had not already
been dealt with by Drummond, were brought up to modern standards. In addition
the 382 class of 2-4-0 and the majority of the 15½in. 0-6-0
locomotives of the North British were also rebuilt. The double-framed St.
Margarets 0-6-0 engines' with the 4ft. 6 in. and 5 ft. Oin. wheels were taken
in hand. Johnson's double-framed 0-4-2 No. 262 was rebuilt as a saddle tank.
For some reason the 341 class of 2-4-0 was not rebuilt when the very similar
382 series were modernised, and the former were replaced when the original
boilers wore out. They were somewhat smaller machines than the 382 class
Continued page 155.
South African Railways. 52
Orders for 1,000 large wagons have been placed with a firm in the
Union.
L.N.E.R. 52
With a view to providing stronger track at some places on their system,
flat-bottom rails had been laid.
The late MR. R. E. L. Maunsell, C.B.E.
52
Death of Mr. Richard Edward Lloyd Maunsell, C.B.E., who was, until
his retirement in 1937, chief mechanical engineer of the Southern Railway.
Maunsell started his engineering career in 1888 as a pupil under H. A. Ivatt
at the G.S. & W.R. works, Inchicore. In 1891 he joined the former Lancashire
& Yorkshire Railway at Horwich and after serving as a pupil there became
locomotive foreman at Blackpool. In 1894 he went to India as assistant locomotive
superintendent of the East Indian Railway, and remained for two years. In
1896 he returned to Inchicore and held the post of works manager there until
he succeeded R. Coey as locomotive engineer in 1911.
Maunsell was appointed chief mechanical engineer of the former South Easten
& Chatham Railway in 1913, and after the grouping became chief mechanical
engineer of the Southern Railway. He was President ,of the Institution of
Locomotive Engineers in 1918 and served as a member of the Council of the
Institution of Mechanical Engineers. He was also a past member of the Council
of the Institute of Transport.
Southern Railway. 52
The first of ten of a new design of four-wheeled passenger luggage
vans had been put into service. A number of interesting features, including
reinforced plastic panelling, had been introduced. The bodies were built
of electrically-welded channel sections on frames of channel section steel.
Kitson & Co. , Ltd 52
Owing to the heavy demands for locomotives, the Locomotive Manufacturers'
Association have temporarily suspended the 1938 agreement with Kitson &
Co. to discontinue building locomotives.
"Shadow" trains for invasion armies. 52
A complete "shadow" service of freight trains which can be put on
the line in a matter of hours has been built up by British railways in
collaboration with the Fighting Services. Material from ordnance depots and
stores, dispersed throughout the country, may be required at any of many
ports. The total probable journeys, running into thousands, have all been
classified, routed and timed, any of which can be put into operation at short
notice. Each train in the "shadow" service has a code number which indicates
to the railway operating experts that "ABC 4217',' for instance, means that
a locomotive and forty trucks must be at Depot "A" to load up and be ready
to leave at 15.00 hours on a given day and go, by a prescribed route, arriving
at 06.00 hours the next morning.
L.M.S. 52
Instead of a number of platelayers removing worn points and crossings
and replacing them with new, worn rails are now welded and resurfaced by
an expert welder while the rail is in its original position, in the intervals
between the passage of trains.
H.F. Hilton. "The White Horse of Kent". 53-5. diagram
(side elevation)
Correspondence between the Croydon & Dover Railway and Robert
Stephenson & Co. through E.F. Starbuck and E.J. or E.I. Cook. W. Pulford
was the Secretary of the Dover Railway. The White Horse of Kent was
shipped on the Ann which was lost off Whitby: its WN was 399. A
replacement WN 435 may have been constructed by Nasmyth & Co.: it was
delivered on 5 September 1844. See also page 104.
Propeller railcars. 56-7. 2 diagrams including side elevation), plan
Mentions the Bennie railplane, the Rail Zepplin which achieved 145
mile/h between Hamburg and Berlin and more recent work in France and the
Netherlands
H. Fayle. The Dublin & South Eastern Railway and its locomotives. 57-9. illustration, map
O.S. Nock. The "Claughton" class, L.N.W.R.: an analysis
of their design and performance. 60-1. illustration, 2 diagrams
No. 2221 Sir Francis Dent in 1924 between Hellifield and Aisgill
with 350 tons and No. 6001 in 1930 between Leeds and Hellifield where a pilot
engine was added. Concluded page 73
E.A. Phillipson. The steam locomotive in traffic. XII. Rostering of
enginemen, depot correspondence, conditions of service for staff in Great
Britain. 62-3
Rates of pay in Great Britain including London allowance and mileage
payments and lodging allowances, etc.
Correspondence. 65
The braking of trains. C.A.
Branston.
As none of your readers appear to have gone in on the matters raised
in vour editorial on Brakes, I hope you will permit me to make one or two
remarks on the subject.
Your placid acceptance of the present-day use of the steam brake is, frankly,
disappointing. For locomotive brakes steam has long ago been replaced by
air except in this country, where in certain cases a steam brake is employed
in conjunction with the atmospheric brake on the train. This is presumably
in order to avoid the difficulty of suitably locating the large number of
bulky vacuum brake cylinders which the present-day weight of the locomotive
demands; thus, on the London & North Eastern Railway, a locomotive weighing
165 tons is equipped with six 21 in. vacuum brake cylinders.
It is obvious that with such an arrangement the synchronisation of the initiation
of an application and of the pressure rise in the brake cylinders on locomotive
and train respectively must be very imperfect, as the build-up of pressure
in the steam brake cylinders is erratic both in incidence and in degree,
due to the initial condensation; to suggest that such irregularities can
be smoothed out by a suitable design of brake valve is to envisage a mechanism
of quite unheard-of precision and delicacy of control. Some experiments carried
out on the Nord Railway in France showed that with a boiler nressure of 114
psi. it required I2 seconds to raise the pressure in the brake cylinders
to l100 psi; when the cylinders were warm, i.e., immediately after a preceding
application, the time was 4.2 seconds. There can be but little doubt that
accidents, such as that at Oakley Junction in I938, have, to a considerable
extent, been due to insufficient braking as a result of this feature of the
peculiar brake equipment employed. As a matter of possible interest, I may
perhaps add that, to actuate a train brake, steam has been tried seriously
only once, as far as I know; this was Goodale's patent on the Chicago &
Canada Southern R.R. about 1872; the experiment failed signallv.
To increase the efficiency of the brake you suggest reducing the frictional
losses by simplifying the foundation brake gear. This expedient was actually
employed in two of the brakes which participated in the Newark brake trials
in 1875. in. the Clark hydraulic brake one brake cylinder was provided for
each braked axle, while the Barker hydraulic brake comprised a separate brake
cylinder for each braked wheel; both these equipments provided what amounts
to a clasp brake. The brake or rocker shaft to which you allude is, of course,
a feature peculiar to the normal foundation brake gear of the atmospheric
brake only. It should be emphasised, however, that a simplification of the
connections, however effected, is desirable, not so much on account of the
consequent reduction of the frictional losses, but as lowering the amount
of lost motion, which in a fluid pressure brake is the worst dissipator of
brake power, as it increases the piston travel and thus lowers the final
pressure of the air or degree of vacuum (as the case may be) in the brake
cylinders. As an historical detail I may add that the use of locomotive truck
brakes originated in the U.S.A. on the Old Colony R.R. about 1890, and has
been general practice ever since.
To adjust the actual retardation of the brake in keeping with the adhesion
of the wheels is a problem to which George Westinghouse found an ingenious
solution in the course of the experiments carried out by Capt. (later Sir)
Douglas Galton and himself on the London, Brighton & South Coast Railway
in 1878-9. The air pressure in the brake cylinder is reduced as the coefficient
of friction between shoe and tyre rises with the falling speed. However,
as the adhesion between wheel and rail and the coefficient of friction between
shoe and tyre are dependent on other considerations as well (e.g., atmospheric
conditions, duration of application, etc.) Westinghouse considered that in
service use the advantages derived from this torque- controlled brake cylinder
pressure relief valve did not justify the necessary complications; the device
appears to have been used for the last time to control the driver brakes
on the locomotive which hauled the Westinghouse trial train in the second
Burlington brake trials in 1887.
The device was, however, definitely revived in 1923 by Knorr in Germany for
use with the Kunze-Knorr brake, type Kksbr, and eight years later with the
Hildebrand-Knorr brake, type Hiksbr. In the latest German brake equipment
for high-speed trains, type Hikssbr, a more elaborate arrangement has been
adopted, comprising i.e., a centrifugal governor located on the end of the
car axles. In this case, however, the pressure reduction in the brake cylinder
is not effected gradually as the speed drops, but abruptly the moment the
speed falls below the rate of 31 m.p.h., the braking ratio. being thereby
reduced from 200 per cent. to 75 per cent. of the empty weight of the vehicle.
Though irrelevant to ,the present point, it may be of interest to note that
this particular brake equipment comprises yet another device originally the
subject of a Westinghouse patent, viz., the remarkable accelerator with which
the transmission of an application along the major portion of the length
of the train is effected by means of wires, in which way the amazing rate
of propagation of 3,000 ft. per sec. has been attained in a complete train.
Your editorial clearly reflects the difficulties which await or are even
now already troubling brake engineers in Britain with a brake which would
appear to have reached the highest development of which it is capable. We
are, in fact, placed squarely before the question: Was the choice wise when
in 1923 the atmospheric brake was selected as the common standard equipment
for all steam trains of this country? At that time this brake was already
fitted to approximately 2/3 of the power-braked rolling stock of the roads
involved, so that, viewed from the standpoint of immediate outlay, the decision
is intelligible. In order to judge of the general soundness of such a choice
it is necessary, however, to consider other circumstances, existing or
anticipated, when this step was taken.
British Railways. 64
A survey taken towards the end of last year revealed that over the
busiest section of double-track line 284 trains passed in 24 hours. These
included 120 passenger trains, 12 parcels trains and 144 freight trains composed
of a total of 7,200 wagons.
The braking of trains. Boneham &
Turner, Ltd. 64
Re Braking of Trains: we have introduced a range of hardened and ground
pins and bushes which reduce much of the idle brake movement which you mention.
Due to the hardened surfaces, very little wear takes place, and the efficiency
of the brakes is maintained over much longer periods. At the moment, these
pins normally have a clearance of 1/32nd in. but if positive means of lubrication
could be used together with methods for keeping out foreign matter, etc.,
this clearance could be considerably reduced.
Reviews. 64
Descriptive diagrams of the locomotive, including diesel
rail cars. A.F. Hunt.
Illustrating the different valves and how they take steam from the
boiler. Other sketches (not to scale) include Jumper blast-pipe, Swindon
superheater, Cylinder lubrication, Slide valves, Piston valves, Stephenson
and Walschaerts valve gears, Exhaust injector, Vacuum brake pump and Retaining
valve. The Diesel Railcar Notes refer to the G.W.R. units supplied by the
Associated Equipment Co.: Oswestry Mutual Improvementt class. Landscape
format
The Railway Handbook, 1943-1944. Railway Publishing Co., Ltd.
Many of the sections in this useful handbook have been revised. New
sections relate to the Railway Companies' Association, Railways and the War,
and Express Traffic in North America.
Electrical Year Book, 1944. Manchester: Emmott & Co., Ltd.
New matter has been added on induction motors, commutators, frequency
changers for high-speed drives, and in the Measurement and Testing Section
there is new matter on D.C. and A.C. potentiometers.
Mechanical World Year Book, 1944. Manchester: Emmott & Co., Ltd.
This useful volume has been revised to keep it up to date. Workshop
and factory processes, detailed particulars of the newer materials and
present-day data are presented in a readily available form
G.E.R. locomotives, by C. Langley Aldrich. 55
pp.
A well-illustrated booklet in which is gathered together interesting
details of all the locomotive types that existed on the old Great Eastern
Railway when that company lost its separate identity in 1923, together with
particulars of the changes that have taken place since then.
Locomotives of the Taff Vale Railway, M.
C. V. Allchin. , 14 pages,
A complete. list of the Taff Vale locomotive stock at the grouping,
together with builders' dates and the numbers allotted when they were
incorporated in the G.W.R. list. A number of illustrations, mostly of older
types, are included. No dimensions are given.
Trade catalogues. 64
Elastomeric Engineering
Contains useful information about rubber-bonded-to-metals and may
be obtained on .request from T. B. Andre Rubber Co., Ltd., Kingston By- pass,
Surbiton , Surrey.
Locomotive power. 65-6.
Editorial examination of some of the formulae available:
F.J. Cole (of Alco), E.C. Poultney
(as stated in ILocoE Paper 445) and
W.F. Kiesel. The significance
of grate area was considered
South Australian 520 class engines. 66-8. illustration,
diagram (side elevation)
Streamlined 4-6-4 with light green livery. Two 20½ x 28in welded
cylinders with 12in piston valves, Cast steel bar frame. 45ft2
grate area; thermic syphones; 2163ft2 total evaporative heating
surface; 651ft2 superheat and boiler set at 215 psi. Locomotive
marked a return to Walschaerts gaer from Baker. F. Harrison, CME..
C.M. Doncaster. Sturrock's condensing tank, Great Northern
Railway. 68. illustration
In 1865 Avonside supplied fifteen 0-4-4T: a further five were obtained
from Neilson; and fourteen further were supplied to the London, Chatham &
Dover Railway. In 1866 a further five given running numbers 270-4 were supplied
by Neilson. They had 16½ x 22in cylinders and 5ft 6in coupled wheels.
They tended to oscillate at high speed.
W.F. Wegener. Performance of class 19c engines on
the South African Railways. 68-70. 2 illustrations
4-8-2 fitted with poppet valves working on severe gradients with heavy
loads and capable of high speeds. . See also letter from
M.M. Loubser on page 164..
James F. McEwan . Locomotives of the Caledonian
Railway.71-3. 5 illustrations (including 1 line drawing: side
elevation)
Continued from page 37. In 1868 there appeared from the
Perth Shops two 2-4-0 type passenger engines. These had been on hand at Arbroath
Works at the time of the amalgamation, but all new work there was stopped
and the unfinished parts were taken to Perth and erected. The cylinders were
outside and the typical double frammg was used. The cylinders were 17 in.
diameter by 22 in. stroke. The coupled wheels were 7 ft. 2 in. diameter,
and the leading wheels 3 ft. 10½ in. diameter. The wheelbase was 7 ft.
6 in. plus 8 ft. 0 in., total 15ft. 6 in. The frames were 24 ft. 2¼
in. long. The boiler was retained 4 ft. 1 in. diameter and 10 ft. 11 t in.
long in the barrel. The distance between the tubeplates was 11 ft. 2t in.
There were 227 tubes 1 i in. diameter with a heating surface of 1,040.61
sq. ft. The firebox heating surface was 101.42 sq. ft., includ- ing that
of the ring type mid feather which was and gave 28.61
ft2 of heating surface, making a total of 1,142.03
sq. ft. The grate area was 13.52 ft2 and pressure
120 lb. The boiler had raised firebox casing and the cab was of the typical
Stroudley type. There was a pillar safety-valve on the boiler barrel and
another safety-valve on the dome, which was located over the firebox, The
rims of the driving w:heels were not concentric, being 7/8in.
thick minimum increasing to 21/8 in. on opposite side to the
big end to act as a balance weight. Compensating beam springing was used.
The firebox mid feather was removed about 1872, and some time before withdrawal
the Westing house brake was fitted. The tenders ran on four wheels and carried
1,800 gallons of water and two tons of coal, and were made to the former
S.C. pattern. When turned out these two engines bore the running numbers
472 and 473, which in 1876 were altered to 123 and 124. At the period of
this renumbering the Caledonian were beginning to have their passenger engines
and goods engines so mixed and scattered in numbering that a system of
renumbering was being introduced. The scheme got a certain length and then
was stopped, and from the renumbering particulars which have already appeared
in the history it can be readily seen that the authorities were themselves
getting a little bit confused in the endeavour to carry out the scheme. No.
472 (later 123) was generally employed on the Perth to Forfar run with an
occasional turn to Glasgow. In 1886 the engine was renumbered 123A and withdrawn
in 1888. No. 473 generally ran in the Perth and Glasgow link until about
1875,. when it was used on the Perth to Stirling locals. In 1885 it was given
a heavy overhaul at St. Rollox, after which it went to work on the Perth
to Crieff trains, via Methven Junction, although an occasional visit was
made to Glasgow. In 1886 it was renumbered 124A and was withdrawn from the
Crieff job and <<<scrapped in 1893. For local passenger traffic
the well-known No. 1 class of 2-4-0 was turned out between 1869 and 1871.
Neilson & Co. and Dubs & Co. both sup- plied locomotives. Neilson's
lot had spring balance safety-valves enclosed in a brass casing over the
firebox. A few of the Dubs' make engines had three-column Naylor safety-valves,
and the re- ma:inder had Salter type safety-valves. All the boilers were
flushed-topped. When most of the class went in for overhaul the Ramsbottom
type of safety-valve was fitted, although in some cases this change was made
some time after the overhaul. The usual design was followed, with outside
cylinders, double framing with outside bearings on the leading axle and inside
bearings for the coupled axles. The springs for the coupled axles were under
the axle-boxes and were compensated. For the most part the tenders for these
engines came from older engines which in turn had received even older tenders.
The cylinders were 16t in. diameter by 22 in. stroke. The driving wheels
were 6 ft. 2in. diameter and the leading wheels 3 ft. 8 in. diameter. In
the Dubs' series the wheelbase was 15 ft. 1 in., and in the Neilson series
this was 15 ft. 2in. The coupled wheelbase was 8 ft. 7 in. in both series,
but the spacing of 4 C.R. 2.4.0 No. 59 (original No. 1) as overhauled and
running 1891. the Ieading axle from the leading coupled was 6 ft. 6 m. m
the Dubs' lot and 6 ft. 7 in. in the Neilson. The cylinders of the entire
class were bored to 17 in. diameter in the '70s. The other dimensions were:
Heating surface, tubes, 914 sq. ft., firebox, 68.2 sq. ft., total 982.2 sq.
ft.; grate area, 14.,3 sq. ft.; working pressure, 140 lb. The weights m working
order were: Leading axle, 11 tons. 2 cwt. 1 qr.; driving axle, 12 tons 6
cwt. 2 qrs.; rear coupled axle, 11 tons 11 cwt.; total, 34 tons 19 cwt. 3
qrs. The tender ran on four wheels and weighed in road trim: Leading 'axle,
10 tons 2 cwt. 2 qrs.; rear axle, 9 tons 2 cwts. 3.qrs.; total, 19 tons 5
cwt. 1 qr. These tenders carried 1,500 gallons of water and four tons of
coal. No. 1 was first renumbered in 1881 so that the Officer's engine could
have this number, and was sub se- quently renumbered when the new 4-4·0
engine was built. None of the class was rebuilt, although several of the
overhauls were very heavy. Some of the engines so treated were Nos. 8 to
14 and 16 in 1880, No. 22 in 1886, and No. 26 in either 1890 or 1885: Although
used on the Glasgow to Edin- burgh line and also to the Coast when built,
the class soon became scattered throughout the system. Others finished their
days as station pilots at Glas- gow (Central), Stirling, Carlisle and Perth,
or on the stock trains. In the late '80s, Nos. 2 and 11 were at Dundee for
the Joint Line trains. No. 17 remained at Forfar for many years, No. 13 was
regularly employed on the Perth and Dundee trains, sometimes shedded at Perth
and other times working from Dundee. Nos. 9 and 10 were Perth engines. In
the late '70s several of the class were at work on the Portpatrick Railway.
To be continued)
Image C.R. 2.4.0 l4a as finally running, and with original type boiler.
Image C.R. 2-4-0 Passenger Engine, built at Perth, 1868.Image C.R. 2-4-0
No. 0 (Class No. 1) as built with Naylor safety valves.
Image C.R. 2.4·0 No. Ha (Class No. 1) as overhauled and running 1895.
O.S. Nock. The "Claughton" class, L.N.W.R.: an analysis
of their design and performance. 73-6. illustration, 2 diagrams
Concluded from page 61. Among engines
transferred to the Midland Division was the pioneer of the whole class Sir
Gilbert Claughton, then renumbered 5900. In 1931 this engine was doing
some excellent work on the Settle and Carlisle line, a good example of which
is shown m the graph, Fig. 7. This diagram forms part of a run in which the
48.3 miles from Carlisle to Aisgill summit were climbed in 66 minutes while
on that part of the ascent illustrated the speed averaged 39 m.p.h. Generally
speed was sustained at 34 to 35 m.p.h. on the 1 in 100 gradients with the
load of 335. tons, the only falling-off from this standard bemg just above
Kirkby Stephen, where a rmnimum of 31½ m.p.h. was recorded. It should
be added that the weather was fine, though breezy on the exposed stretches
of line. One interesting feature of Claughton performance on the Midland
Division was the regular attamment of downhill speeds distinctly higher than
those ordinarily reached on the L. & N.W.R. line to Carlisle. Since the
early days of the Expenments, when speeds up to 90 m.p.h. were run in descending
from Shap, the downhill running of L. & N.W.R. Scottish expresses was
moderate, speeds much exceeding 75 mile/h. being unusual. The smooth riding
of the Claughtons, due in part to the balancing of the revolving parts and
the complete elimination of hammer-blow evidently tempted the Midland drivers
to bursts of speed that would only be prudent when their own engmes were
m perfect condition. (Only those who have ridden on a really rough compound
will fully appreciate this last remark!) With the "Claughtons" speeds up
to 84-85 m.p.h. became quite common in descending from Aisgill and Blea Moor,
but perhaps the most remarkable example came on a rough winter's afternoon
when the 2.42 p.m. express from Carlisle had lost a little time on the ascent
to Aisgill. The table-land to Blea Moor was covered at normal speed, but
then on emerging from Blea Moor Tunnel the driver evidently left his regulator
and cut-off positions unchanged; for in a matter of six miles we accelerated
from 58 to 88 m.p.h. The curve of acceleration is shown in Fig. 8, from which
it appears that, but for the sudden brake application near Horton, the speed
might have soared well over the 90 mark.
Under L.M.S. administration the Claughtons were allowed a maximum load of
380 tons on Special Limit trains on the Western Division, and even after
the Royal Scots were in general use a number of important services were still
worked by the ex-L. & N. W. R. engines, including the up Merseyside
Express (55.5 mile/h, start to stop, from Mossley Hill to Euston, 189.7
miles), the 3½-hour Euston-Manchester expresses ((56.8 mile/h. start-to-stop
from Wilmslow to Euston, 176.9 miles) and the up Mid-day Scot between
Crewe and Euston. With gross loads of 390 to 400 tons behind the tender these
were heavy turns. Another train on which I noted consistently hard work by
the Claughtons was the 10.28 from Carnforth to Crewe. With stops at Lancaster,
Preston, Wigan and Warrington, this train was allowed a running time of 102
minutes for the 78.2 milesã46 mile/h. average; and in consideration
of the comparative shortness of the start-to-stop runs, the work involved,
with loads varying between 346 and 393 tare tons, was very creditable. On
one typical occasion, with a load of 379 tons tare, 405 tons gross, behind
the tender, and engine No. 5945 Ingestre (L. & N.W.R. No. 2420)
the actual running times were equal to a non-stop run of 91 minutes from
Carnforth to Crewe, 51½ mile/h. average, including the usual very slow
passage made by non-stopping trains through Preston.
There were occasions when pilots were not available and Claughtons were called
upon to haul loads considerably above their maximum tonnage. I was fortunate
enough to record one such instance, in 1930, when a performance almost up
to Ralph Brocklebank standard was put up. The train concerned was
the 17.20 from Euston, on a day of heavy traffic. From the start matters
were quite normal, with a load of 370 tons tare, and Claughton class engine
No. 6021 Beuere (L. & N.W.R. No. 192). The running to Rugby was
smart, though nothing out of the ordinary by former L. & N.W.R. standards.
At Rugby the load was increased to 398 tons tare, 435 tons gross behind the
tender, and although the engine was, by contemporary standards, overloaded,
no pilot was provided. It was certainly not necessary! The 51 miles from
Rugby to Stafford were then booked to be run in 56 minutes, start to stop;
No. 6021 made the run in exactly 52 minutes, with an average of 64 m.p.h.
for 42 miles on end. At Stafford a further coach was added and, with the
train now very crowded, the gross load behind the tender was 465 tons. Details
of the run to Crewe are shown in the accompanying diagram, Fig. 9. The haulage
power of a Claughton in the hands of a competent crew was amply demonstrated
on this length. The start was very rapid, with speed rising to 50 m.p.h.
in 3¼ miles, after which a D.H.P. of 1,050 to 1,100 was sustained throughout
to Whitmore summit, where on the 1913 trials the corres- ponding figures
of D.H.P. were around 1,115. A sustained maximum of 75 m.p.h. brought the
17.20 express into Crewe in 28¼ minutes from Stafford, nearly two minutes
early.
In view of the strictures placed upon the original design in respect of the
size of the boiler the fitting of enlarged boilers to certain engines of
the class, under the L.M.S. ownership, was an interesting event .. The following
table gives particulars of the original and enlarged boilers:
. | Original | Enlarged. |
Length of barrel .. | 14ft. 10½in. |
14ft. 0in. |
Number of small tubes | 149 | 140 |
Outside diameter of small tubes | 17/8 | 21/8 |
Heating surface (ft2.): | ||
Small tubes | 1088 | 1088 |
Large tubes | 486 | 462 |
Firebox | 175 | 183 |
Superheater | 379 | 365 |
Grate area (ft2) | 30.5 | 30 |
Boiler pressure (psi) | 175 | 200 |
There was thus no appreciable change in the total heating surface,
but the shortening of the barrel, together with the use of larger diameter
tubes, made for considerably freer steaming. Some of the re-boilered engines
were fitted with Caprotti valve-gear, though, by this latter change the whole
characteristics of the engine were so altered that they could no longer claim
any engineering affinity with the original design, save that the same wheels
and frames were used.
The true Claughton rebuilds, retaining the Walschaerts gear, proved excellent
engines on the road. A number of them were stationed at Preston for working
the Liverpool and Manchester-Scottish expresses, and on bookings of 105 minutes
for the 90 miles from Preston to Carlisle 51½ mile/h
averagethey handled loads of 400 tons, tare, over Shap without assistance.
One such run that I experienced revived older memories, for the engine was
none other than Ralph Brocklebank, L.M.S. No. 5906, with a load of
393 tons tare, and 415 tons gross behind the tender. The running was closely
in accordance with the sectional times then scheduled, Shap Summit being
passed exactly on time in 73 minutes from Preston, 58.7 miles. This involved
sustained minimum speeds of 30 mile/h on the 1 in 106 leading to Grayrigg
summit, and 21½ mile/h. on the 1 in 75 of Shap incline proper.
One of the most impressive examples of the work of the rebuilt engines that
I ever noted was on the Ulster Express in 1935, when No. 5970
Patience (L. & N.W.R. No. 2499) took over the haulage of a 475-ton
train at Crewe. The nominal tractive power of these locomotives has certainly
been enhanced by the use of 200 psi boiler pressure, against the original
175 psi but, nevertheless, to make as fast a start out of Crewe as the
fire-eating Ralph Brocklebank of 1913, and moreover to keep level
for the first 14 miles, was a remarkable feat with a load 32 per cent. heavier.
This performance is shown graphically in Fig. 10. It was only through the
more pronounced slack at Weaver Junction that Patience fell behind
at all, and even so she passed Warrington in 24½ minutes, against the
23¼ minutes of the 1913 flyer. After that the Ulster Express
was delayed by signals, and further running, though good, was less spectacular.
It is idle to speculate as to how different L.M.S. locomotive history might
have been had Crewe rather than Derby gained the ascendancy in 1923. The
eclipse of the Claughtons was merely symbolical of a changed order of affairs
that must have been a great disappointment to the majority of old L. &
N.W.R. men. So far as actual haulage ability is concerned the 1913 trials
alone are enough to place the Claughtons second to none among locomotives
of pre-1914 vintage, and the work of Beuere seventeen years later
shows that they were still capable of the same standard of performance. On
the coal consumption figures taken by the L.M.S. the class stands condemned,
by modern standards, on the score of extravagance, though why Derby did not
pursue an alteration that is said to have yielded a 20 per cent. reduction
is not generally known. It was on engine No. 1093 Sir Guy Calthrop,
that this alteration was madea rearrangement of the fire-bars, to give
more air space, and some changes at the front end. The coal consumption of
this modified engine was given as 4 lb. per D.H.P. hour, very little more
than the 3.78 lb. per D.H.P. hour for the Midland compound used in the
comparative trials. As pre-1914 standards went, even the 5 lb. per D.H.P.
hour recorded with No. 5917 by the Derby authorities was not excessive. On
expresses booked at no more than 47½ m.p.h. non-stop from Newcastle
to Edinburgh, Atlantic engines of the North-Eastern Railway were 5 and even
6 lb. of coal per D.H.P. hour, with loads of 365 tons, and where heavy duties
were concerned consumptions of 50 to 60 lb. of coal per train mile were quite
usual. Only on the G.W.R. were to be found locomotives that, in heavy duty,
approach the modern standard of 31b. per D.H.P. hour. In this connection
it is, however, worth noting that when a Castle class 4-6-0 was tested between
Euston and Carlisle, in 1926, her coal consumption was recorded as 3.78 lb.
per D.H.P. hour-equal to a Midland compound. But it is hard to reconcile
this figure with the 2.83 lb. per D.H.P. hour recorded on the G.W.R. in 1924
in a very severe test from Swindon to Plymouth and back on another of the
Castle engines.
To conclude, the Claughtons were the last representatives of the old Crewe
dynasty, a line that included the Lady of the Lake singles, the Precedents,
the ill-starred Webb compounds, and the amazing George the Fifths. The
Claughtons, although including several new features, such as a sloping
fire-grate, Belpaire firebox, and the Walschaerts valve-gear, were essentially
a Crewe design, and their feats of haulage provided a worthy conclusion to
the line.
Indian Railways. 76
Forty locomotives of the XE type were being built in the U.S.A. They
are for the broad gauge and will be known as X Eagle goods engines.
Canadian National Railways. 76
Locomotives consumed 7,500,000 tons of coal in 1943. A yard engine,
used for shunting consumed approximatelv three tons in eight hours service,
while a heavy main-line locomotive, Northern 4-8-4 wheel type, required nine
tons for each three-hour run.
C.M. Doncaster. An old Rennie single.
76. illustration (drawing: side elevation)
The engine London was one of four bu!lt by George and John
Rennie, Engineers, Blackfriars, in 1838, for the London & Southampton
Railway, which later became the London & South Western Railway.
The other three engines of the class were named Victoria, Garnet and
Reed respectively. They were the first six-wheeled engines on the
line, the only previous engines being of the four-wheeled Bury typeone,
the Lark, having been used for ballasting work by the contractors.
George and John Rennie were famous engineers and, unlike most loco builders,
were largely employed on shipbuilding, bridges, harbours. and general engineering
construction. The engme illustrated bears a strong resemblance in design
and proportions to the standard Sharp's engine which first came out
in the previous year. Actually, nine similar engines were delivered in 1838
by Sharp, Roberts & Company, with wheels and cylinders of the same dimensions
as the Rennie engmes, namely, driving wheels 5 ft. 6 in., cylinders 13 in.
dia. by 18 in. stroke. The tenders were four-wheeled. The tender on the Rennie
engine London shown in the illustration has been added by the wnter of these
notes and is not necessarily correct in detail, though it is copied from
tenders in use at the date. It will be noticed that the brake-blocks were
applied by the stoker pulling over a long lever.
Tender engines had no brakes on the engine wheels until about 1876, the tender
only being fitted with them. It will be noted that London had no
wheel-guards, hence there was no handrail along the boiler. The cylinder
cocks could only be opened by hand behind the buffer beam whilst the engine
was standing. The fixed safety-valve was inside the ornamental dome, and
steam escaped through the small apertures at the top. The water gauge and
cocks were on the side of the firebox. The water capacity of the little tender
was 118.8 feet3, which was sufficient to supply
the engme for 1.87 hours at an average evaporation of 63
feet3 per hour.
Locomotive power. 77-9. 2 diagrams.
Paper by E.C. Poultney, bearing
the above title read before members of the Institution of Locomotive Engineers
on 27 October 1943, explains a method which the author
has evolved for determining the probable power output of simple expansion
steam locomotives as measured by the power available at the coupling between
the locomotive and the train. As a result of the study the conclusion has
been reached that it is best and most convenient to separate entirely the
boiler and engine performance and estimate locomotive resistance by some
formula: which includes engine friction and the rolling and air resistances.
The means proposed for estimating pulling power throughout the usual operating
speeds obtaining in either passenger or freight service is therefore as follows.
Four distinct processes are involved. These are the determination of:
1. The Tractive Force.
2. Boiler Steaming Capacity.
3. The mean effective pressure in the cylinders from which is calculated
the Indicated Tractive Force.
4. Resistance of the Locomotive.
5. The Tractive Force depends entirely on the dimensions and the number of
the cylinders, the diameter of the driving wheels, and the steam pressure,
the mean pressure (maximum) being dependent upon the initial pressure and
the full gear cut off.
2. Boiler capacity is taken to be proprtional to the grate area, and is
determined by the firing rate and the heat value of the coal fired.
3. The available mean pressure in the cylinders depends upon the steam supplied
to the engines per unit of time. This is governed by the boiler capacity
in relation to that of the cylinders.
4. Locomotive Resistance is a function of the total weight, the size of driving
wheels, the number of coupled axles, and the head-on air ap resistance.
Tractive Force.
(1) When calculating the tractive force what is usually wanted is the maximum
value. This can In be estimated under two different heads:
(1) The maximum tractive force in the cylinders called the Indicated
Tractive Force. Ind. T.F.
(2) The maximum tractive force available at the rim of the driving
wheels at the point of contact between the wheel and the rail. The latter
is called the Rated Tractive Force.
R.T.F.
The Author determines 1 and then 2.
The Indicated Tractive Force is made up of the engme constant C. This
is purely dependent upon the cylinder dimensions and their number and the
size of the driving wheels. The actual indicated tractive force is C
multiplied by the mean effective pressure. The latter depends upon the initial
pressure (psi). and the cut-off in full gear for maximum indicated tractive
force. It therefore varies according to the cut-off in full gear. The mean
pressure for any initial steam pressure and rate of admission has its maximum
value at very low speeds r.p.m. or m.p.h., often called. zero speed. As the
speed increases the cut-off remaining unaltered there is a gradual reduction
III the mean pressure. Values for the factor expressing the mean pressure
as a percentage of the initial at zero speed and at 60 r.p.m. are given for
various rates of full gear cut-off. The Indicated Tractive Force for any
pressure P taken as being the boiler working pressure is for a full gear
cut-off of 75 per cent. as below:
ex P x 0.86
(2) Rated Tractive Force.
This is the tractive force, maximum, at the rim of the driving wheels. It
is therefore equal to the Indicated Tractive Force less the mechanical resist-
ances of the engines. This is taken to be equal to 8 per cent. of the Indicated
Tractive Force, mean- ing that the value of the mean effective pressure factor
already mentioned when referred to the rim of the drivers is reduced by 8
per cent., so that as a case in point the factor 0.86 becomes:
0.86 x 0.92 = 79.3
say, 0.79
The R.T.F. would therefore be:
ex P x 0.79
It is almost universal practice to use the factor 0.85 when calculating the
R.T.F. regardless of the maximum cut-off in full gear, and while this is,
strictly speaking, incorrect, no harm is done so long, as is usually the
case, the value of the m.e.p. factor employed is stated.
Boiler Steaming Capacity.
To determine the weight of steam available from a boiler of given dimensions
the author has, after mature consideration, decided to accept a method suggested
by T.R. Cook, in an article which appeared in Baldwin Locomotives,
October 1932, and in which a set of curves was published showing the hourly
evaporations obtainable per
ft2. of grate area at different
rates of firing coal or oil pounds per
ft2 of grate area per hour. In all
nine different curves were shown, five for coal, each corresponding to a
different heating value per B.Th.D. per pound and for values varying from
11,000 to 15,000 B.Th.D. The evaporatrve values suggested for estimating
boiler capacity are put forward in the belief that they are reasonably applicable
to good average practice; further, it is, of course, assumed that steaming
power is proportional to the size of the fire grate, and is independent of
the heating surfaces. Within the limits set by normal boiler proportions
this may be accepted. There is, however, a further point which may be mentioned,
which is the design of the front end arrangements, variations in which can
and do affect steaming. A table setting out the evaporations at firing rates
from 30 to 120 lb. coal per
ft2 of grate area per hour was included
in the paper and the author explained at length how the actual steam supply
to the cylinders was computed, making allowances for that used by injectors,
ejectors or air compressors for the continuous brake, etc.
Cylinder Power.
The power developed in the cylinders is expressed either in terms of tractive
force or horse-power, and there are two different methods of determining
tractive force. Tractive force can either be the tractive force exerted in
the cylinders, which may be called the Indicated Tractive Force, or it may
be measured at the rim of the drivers, when it is generally designated as
the Rated Tractive Force. The maximum tractive force that a steam locomotive
of normal design is capable of exerting when measured in the cylinders is
dependent on the size and number of the cylinders and the diameter of the
driving wheels, and by the mean effective steam pressure acting on the pistons.
The mean pressure available being governed by the rate of cut-off in full
gear. The speed that any given locomotive can attain when operating in full
gear depends on the steam supply in relation to the cylinder volume swept
out per revolution of the driving wheels, but, as already stated, as the
speed increases the mean pressure will fall. This is due to throttling losses
through the inlet and exhaust ports, and the building up of back pressure
in the exhaust passages. An indication of how the mean pressure is influenced
by increasing speed in r.p.m. is shown by Fig. 1, which also gives the indicated
mean pressure factors at starting or zero speed, and at a speed of 60 r.p.m.
for the full gear cut-offs most commonly used. The values given for 60 r.p.m.
are empirical. In order to establish the power that a locomotive can develop
in the cylinders or at the draw-bar throughout the speed range measured in
miles per hour it is necessary to correlate the steaming capacity of the
boiler with the steam usmg capacity of the engines. As the locomotive moves
in full gear the time will come when the boiler can no longer supply steam
for full gear operation, and it will then become necessary to reduce the
rate of steam admission. Thus the mean pressure will be successively reduced
with each increment in speed. In other words, the proportion of the maximum
tractive force available at speed will depend upon the boiler steaming capacity.
The effect of boiler capacity on engine power will be shown graphically later.
To determine the point at which full gear working must be terminated, and
the running tractive force indicated in the cylinders for any given rate
of cylinder feed, the formulae devised by
W.F. Kiesel, late Mechanical
Engineer, Pennsylvania Railway, is suggested.
To illustrate the proposed method for plotting the curve of indicated tractive
force against speed in miles per hour a graph (Fig. 2) is presented. This
is plotted for two different rates of firing coal lb. per
ft2 of grate area per hour, and
the corresponding rates of cylinder feed per hour. The curves appertain to
a freight engine of the 2-8-0 type, the pertinent particulars of which are
as follow:
Cylinders (2), 19 in. x 28 in.
Drivers, dia. in., 56.5.
Steam pressure, 225 psi
Grate area, 28.6 ft2
Engine constant, C = 179.
Full gear cut-off, 75 per cent
Weight, engine and tender, 128 tons (full).
Curve 1. Steam to engines, 17,950 lb. per hour. Firing rate, 90 lb. coal
per ft2 of grate area per hour.
Curve 2. Steam to engines, 13,340 lb. per hour. Firing rate, 60 lb. coal
per ft2. of, grate area per hour.
Curves 1 and 2 corresponding to the rates of cylinder feed already mentioned
are computed from the Kiesel formulae. The indicated tractive effort is plotted
against speed in mile/h., the vertical scale being the tractive force in
pounds. On the vertical scale the point A is the maximum cylinder or indicated
tractive force computed by the forrnulee. At 60 r.p.m., equal to 10.1 m.p.h.,
with 56.5 in. drivers the maximum tractive force falls to a value equal to
C x P x 0.775
For the engine under notice the numerical values are
179 x 225 x 0.775 = 31,200 lb.
The line drawn passing through the point A and the point B corresponding
to 10.1 m.p.h. on the horizontal and 31,200 lb. on the vertical scales
respectively, indicates the rate of fall in the m.e.p. with increasing speed,
the engine being in full gear. Further, the points of intersection between
this line and the curves developed from the indicated tractive force formulae
show where the change in cut-off is made, full gear cut-off being no longer
possible, due to the steam demand exceeding the supply. The point C
on the vertical scale corresponds to a value equal to 8 per cent. less than
the maximum indicated tractive force, equal in this case to 32,000 lb. This
is the actual maximum rated tractive force measured at the rims of the drivers.
The line CD is drawn parallel to the line AB and
indicates how the rated tractive effort falls as the speed increases while
the engine is being operated in full gear. This will be further referred
to when the method of arriving at the draw-bar pull characteristics is
considered. The indicated tractive force curves 1 and 2 are completed as
shown by joining them to the line AB denoting the maximum indicated
tractive force by two curves drawn tangentially to the curves 1 and 2 and
to the line AB as shown. Thus the completed curves indicate
the cylinder tractive force developed from zero to the maximum speed.
The curves 1 and 2 show clearly the influence of boiler steaming capacity
on the tractive force available. In addition to the indicated tractive force
there is also shown the mean effective pressures in the cylinders. The line
ab again shows the fall in pressure in full gear cut-off and
the transition curves are drawn tangential to this line, and the curves 1
and 2 showing the mean effective pressure in the cylinders in relation to
the speed of the locomotives in miles per hour.
L.N.E.R. 79
One of the GWR diesel railcars was at work in the Newcastle
district.
Solving a reclamation problem. 79. illustration
Use of electro-magnet to reclaim metal from the Thames lost during
the demolition of the old Rennie Waterloo Bridge from a crane based on the
new bridge.
Correspondence. 80
Class 19c engines on the S.A.R.
"Firebox."
As letters on the relative merits of the R.C. poppet valve gear as
against conventional valve gears appear from time to time, perhaps the following
short account might be of interest to vou. The writer made a trip several
years ago, on the footplate of a class 19C engine (which are fitted with
.the R.C. gear) on the Cape Town-Caledon line,' during the most exacting
portion of the run, viz ,; that between Sir Lowry Pass Station and Steenbras
Siding. This portion, about nine miles in length, involves the Pass itself,
a formidable climb having grades of 1 in 40 and 1 in 44, against the engine,
and severe curves. The line rises 1,100 feet from Sir Lowry Pass Station
to the highest point of the climb, just before Steenbras Siding. On this
occasion the train consisted of seven bogies (225 tons)-the usual load-and
the weather was fine. Starting from Sir Lowry Pass Station (post 14¼)
at the foot of the Pass, the acceleration was rapid. I do not remember the
cut-off at starting, but at post 14½ the speed was 23 m.p.h. on a 1
in 40 grade. At about this point the cut-off was set at 40 per cent., the
regulator being about full open, and the driver did not touch either cut-off
or regulator again during the whole ascent, except to ease the engine down
on some of the curves. This, to me, was a pretty good show. The fireman fired
regularly, but not heavily, and there was no suggestion of the engine labouring.
So much for hill climbing. On the level, their accelerating powers are
remarkable, and a 19c can always be distinguished by its snappy exhaust,
which is noticeable even when notched up. I do not know how a similar engine
having, say, Walschaerts gear would perform, but such a comparison would
be very interesting. My own feeling is that the excellent performance of
the 19C class is due in a large measure to their valve gear, and that this
is not sufficiently recognised. See also letter from M.M.
Loubser on page 164..
Miniature railways. Robin D. Butterell.
Re Wells' recent letter on the Dreamland Miniature Railway. The builder
of Billie was Albert
Barnes, of Rhyl, who also built the locomotives in use in latter years
on the Rhyl Miniature Railway. I can shed no light on the identity of Prince
Edward of Wales; it would be interesting to have a table prepared of
all the Little Giants and their ultimate "fates." Another Miniature Railway.
which I do not think has been mentioned in your articles. is the 15 in. gauge
line in Belle Vue Park. Manchester. Although only a pleasure line. and a
few hundred yards long. it is of a rohust nature. and is at present undergoing
overhaul for the summer season. It has been down about fifteen years. and
has had three locomotives. The present one was built by Barnes, and is an
"Atlantic"; it is a well-proportioned design and bears quite a close resemblance
to the "improved" Little Giant type. as used to run on the Sand Hutton Miniature
Railway. It draws a train of open coaches. There is also a train of closed
bogie coaches. but this is at present under repair. It might also interest
you to know that the Eaton Hall line is still flourtshing, I visited it about
a week ago and discovered that trains. drawn bv the four-wheel petrol locomotive.
still run every day except Sundays. It is interesting to find sleepers stamped
"E.R. 1895 B" and "D B R. 1897 B." The good condition of the permanent way
is no doubt due to these cast steel sleepers. The Cuckoo's Nest branch was
removed recently.
The "White Horse of Kent." C. F. Dendy
Marshall
The letters which have been brought to light by Mr. Hilton will be
much appreciated by all who are interested in locomotive history. There is
one passage in the article which conveys a wrong impression as it stands,
viz., "there is no evidence that the second engine was named White Horse
of Kent. The author doubtless meant that there was none in the papers
he had been examining, but omitted to say so. There is plenty of such evidence
elsewhere. For example, there are numerous references to the engine of that
name in the Gauge Commissioners' Report (e.g., vol. 1, page 148, etc.). Warren
distinctly says she was not built by Robert Stephenson & Co. It is well
known that they often employed other firms as sub-contractors. .
Reviews
The thermal technics of steam boilers. J. Webster.
This monograph deals with the sequence of problems, from the heat
aspect only, as they occur with orthodox boilers. Much useful information
is given in a style calculated to appeal to the busy reader. The calculations
and rules are presented in a readily understood manner. As is only to be
anticipated, water-tube boilers are chiefly dealt with, but the booklet is
none the less interesting to those dealing with other types, as fundamental
principles are the same.
White metalling. H. Warburton,
Apart from the firms who specialise in such work, most engineering
shops, at some time or other, are called upon to line bearings, and it is
upon such occasions that many have discovered that it is not such a simple
procedure as might be supposed--or perhaps it has been left to the customer
to make the discovery, at a later date, when shell and lining parted company.
This monograph gives much valuable information upon the subject and deals
with the operations and considerations involved in the metalling of bearings
up to large sizes. It is a useful contribution to the literature of a subject
not sufficiently understood by some of those who practise it.
L.M.S. Chief Mechanical Engineer. 80
C. E. Fairburn, M.IC.E., M.I,M.E., M.I.Loco.E., the recently appointed
Chief Mechanical Engineer of the L.M.S. had been acting in that capacity
since 1942, when Sir William Starrier was seconded to the Ministry of Production.
He was born in 1887 and educated at Brasenose College, Oxford, entering the
Derby locomotive works under Sir Henry Fowler in 1912. Afterwards he joined
Siemens Bros. & Co., Ltd., being engaged in their railway department.
During the period of the first world war he was with the R.F.C.-later the
R.A.F.-and left this to join the English Electric Co. in 1919. In 1926 he
was appointed general manager of Dick Kerrs, also presiding over the English
Electric Co.'s car works, and rose to the position of chief engineer and
manager of the traction department at the Stafford establishment. He entered
the L.M.S. as electrical engineer in 1934, becoming deputy Chief Mechanical
Engineer in 1937.
The "Railway Mania". 80
During 1844 a remarkable change in the railway world came about and
spread rapidly. It was attributed to the improvement in trade activity following
a severe depression. The total railway mileage at the time in Great Britain
was approximately 3,000, owned by 118 companies. Sixty-six applications,
involving 900 miles of new railway, were received by the House of Commons
at the beginning of the 1844 session. The companies incorporated during the
session were: the Chester & Holyhead; Fumess; Lancaster & Carlisle;
Leeds & Bradford; Manchester. Bury & Rossendale; Preston & Blackburn:
North Wales Mineral: South Devon; North British; Eastern Counties & Thames
Junction: Eastern Union; Norwich & Brandon: Guildford Junction: Brighton
& Chichester; and the Brighton, Lewes & Hastings.
Number 622 (15 June 1944)
British steam locomotives. 81-2. table
F.C. Hambleton. "Lord of the Isles", G.W.R. 83. illustration (drawing: side elevation)
L.N.E.R. 83.
Remaining four of 25 V2 type modified to Pacific type and classified
as A2/1.
[Ministry of Supply 2-10-0 No. 3701]. 84
Photograph of locomotive in LNER Scottish Area
The North London Railway. 84-6. 2 diagrams (side
elevations)
0-6-0T. Continued p. 120
O.J. Morris. Railmen's holiday. 86-7. illustration
Annual excursions to Eastbourne of the LBSCR Stationmasters' and
Inspectors' Mutual Aid Society. Locomotives hauling these trains were decorated
and there was competition between Battersea and New Cross sheds.
Boiler repairs. 88-9. 2 illustrations, plan
Progressive system of boiler repair introduced at the LNER Gorton
Works involving purpose-built gantries
Commonwealth Railways of Australia. 89.
Eight 4-6-0 type locomotives had been taken over from the Canadian
National Railways and a further two 4-6-0s had been acquired from the New
York, New Haven & Hartford RR.
Locomotive power. 90-2. 2 diagrams.
Locomotive resistance
G.E.C. mobile sub-stations. 92. illustration
Mounted on a well wagon intended to accept a 11 or 6.6 kv, three-phase
ac supply and output 1000 kw, 500 volt dc.
L.N.E.R. 92
Experiments in radio transmission between footplate crews and guards
en route. Equipment from Rediffusion Ltd. Sir Ronald Matthews, chairman of
the LNER spoke to Sir Charles Newton, general manager, as he travelled north
by train (seems a long way before the quiet coaches now provided to switch
off such chit chat)
L.M.S.R. 92
On 30 December 1943 cthe LMS ran its hundred thousandth OHMS train
since the outbreak of WW2. Total included 52,603 troop trains, 25,288 stores
trains, 6799 ammunition trains and 15,310 petrol trains.
L.N.E.R. 92
A.G. Minty, assistant district locomotive superintendent, Newcastle
had been appointed acting district locomotive superintendent,
Sunderland.
South Australian "520" class engines. 92
Further information about superheated fitted.
L.N.E.R. class Y8 0-4-0T No. 560. 92. illustration
Fitted with chime whistle off A4 No. 4469 Sir Ralph Wedgwood
destroyed in Baedeker raid on York
New passenger luggage vans, Southern Railway. 93-5. illustration,
2 diagrams (including plans)
Four wheel vehicle where light weight was combined with added protection
for the contents through isolating the body of the vehicle from the frame
using suspension elements consisting of spiral springs with rubber elements.
Plastic panels and welded components reduced the weight. Designed by O.V.S.
Bulleid. Livery was black due to WW2 conditions.
R.B. Fellows. By train to the Eton Montem, 1838-1844. 95-6.
On Whit Tuesday 1844 the last Eton Montem was held. Was the Mortem
killed by the railway? The Montem, which had been held for three, if not
four hundred years, was essentially a school pageant, a feature being the
procession of. the school from Eton to Salt Hill, near Slough, many of the
boys being in "fancy dress", usually of historical type, then, the collection
of money from the spectators, and indeed from all travellers on the road
nearby, a custom open to criticism. The donations, often considerable, were
called "salt", and after all expenses were paid the balance was handed over
to the captain of the school for his use at the University. It is well known
that the Eton governing body got a clause inserted in the Great Western Company's
Act to prevent the building of a station within three miles of Eton
Collegethis, of course, ruled out any station at Slough. James Wyld,
the well-known compiler of early railway guides, states in his Guide to the
G.W.R., published in 1839, that "the enraged Provost of Eton", having discovered
that the company intended to convey passengers to Slough for the Montem,
which in 1838 was held on 5 June, the day after the opening of the railway,
applied to the Court of Chancery to restrain them from setting down or picking
up passengers within three miles of the College, but the application was
dismissed with costs. The Company's Act merely prohibited the building of
a station. John Herapath, the editor of The Railway Magazine, travelled
to Maidenhead and back on Montem Day, 5 June 1838, and in his magazine for
July wntes an account of his journey. The 10 o' clock train from Paddmgton
by which he travelled was made up of eight carriages headed by the North
Star, and carried some 400 passengers; he rode in an open carriage and
complained of the jolting. Returmng from Maidenhead by the 5 o'clock
trainengine Eolusthe train he wrote, stopped at Slough
and took up an enormous load of Montem gentry, who defied police and everything
else to keep them out . . ." The Times stated that a special train
of ten carriages was run late in the evening to bring people back to Paddington
from the Montem.
The next Montem was held in 1841 when there was a station at Slough. In The
Annals of Eton College published in 1898, Sir Wasey Sterry states that
in 1841 the Great Western Railway brought down a crowd of most undesirable
sight-seers and the next Montem of 1844 was the last." Perhaps this was as
well, for according to the Telegraph Book kept at Paddington, some notorious
thieves travelled down on that occasion. The telegraph had not been long
extended to Slough, and It was on Montem Day of 1844 (May 28) that the instrument
was used for police purposes for the first time. The entries show how the
police at Slough were warned of the departure from Paddington by the various
trains of these notorious characters. Extracts were given in the booklet
Brunel and after published by the company about twenty years ago,
and are amusing reading. From the Telegraph Book entries and from other
contemporary sources we learn that special trains were run to Slough for
the Montem of 1844, including a Royal specialfor the company carried
some very distinguished personswhich left Paddington shortly after
10 a.m. and returned from Slough about 2 p.m., conveying H.R.H. Prince Albert
(the Prince Consort), and we also learn that part of the "A" Division of
the London Police were on duty at Eton and Salt Hill.
Correspondence. 96
Condensing locomotives. W.O. Skeat.
You will doubtless have had notice of the very interesting paper on
condensing locomotives by Professor Lomonossoff and Captain Lomonossoff presented
at the Institution of Mechanical Engineers on Friday, May 19· This paper
gives a most interesting world survey of condensing locomotives at the present
time. It must be admitted that this country's contributions in that direction
have not been particularly outstanding, but that may well be, as the authors
suggest, because in such a climate as ours the advantages of condensing are
much less than they would be in other parts of the world.
The authors give some space, however, to two very interesting experimental
efforts by the North British Locomotive Company, the first being the
Electro-Turbo-Locomotive of 1910, and the second the Reid-MacLeod
Turbo-Locomotive which was exhibited in 1924 at Wembley. The authors make
the interesting observation that the second locomotive was possibly a rebuilt
version of the first, and Professcr Lomonossoff, in personal conversation
with me, has pointed out that the arrangement of the bogies and also of the
wheelbase was the same in both these engines thus supporting the authors'
contention. I think it will be generally agreed that the authors, in their
statement that the history of the first, known as the 'Reid-Rarnsay' locomotive,
is somewhat obscure" are not guilty of exaggeration It.is very much to be
hoped that someone may come forward with further information about these
two extremely interestinng and, from the national pomt of view, most important
expenments.
Although in this case private locomotive-building firms were concerned, there
is a tendency among the railways of this country, which seems regrettable,
to suppress the publication of details of any experiments which they do not
deem to be briliantly successful; thus engineers the world over are depnved
of all means Of finding out just how much work has been done and what results
have been achieved during the expenmental stages of any novel idea or principles
m railway locomotion. Unfortunately, this outlook is extremely deep-rooted
and is always instinctively bound up with the .idea that an unsuccessful
experiment would impair the prestige of the administration concerned. In
this direction one is sorely tempted to apply the old saying "The man who
never made a mistake never made anything" and so it is with feelings of regret
that we find so little information on these two notable experimental types
has been allowed to be published. It is hoped, however, that after so many
years have elapsed a more enlightened outlook on the matter may prevail and
that someone may be ermitted to come forward with additional authoritative
information. See also letter from C.R.H.
Simpson..
Reviews. 96
The First Railway in Norfolk. George Dow.
The author, who will be known to most of our readers as the Press
Relations Officer of the L.N.E.R., has produced an excellent booklet, the
publication of which coincides wi th the centenary of the Yarmouth &
Norwich Railway. . Many people will regard this booklet as a model of its
kind; it traces the history of the Y. & N.R. from its inception to its
ultimate inclusion in the Eastern Counties fold and later the G.E.R. The
salient historical points are given Without an encumbrance of detail, and
there are included, inter alia, a map of the line, illustrations of rolling
stock and a complete list of the locomotive stock of the Norfolk Railway.
In congratulating the writer upon the production of such an interesting
contribution to the literature of railways, readers will add the hope that
similar works will follow from his pen.
Number 623 (15 July 1944)
Articulated locomotives. 97.
Editorial: One of the features which attracts attention . when considering
recent locomotive construction in the United States is the increas- ing use
now being made of articulated designs, a principle of construction by no
means new, but which has undergone considerable development, and has of late
been adopted for general main line working of heavy freight trains. The type
of articulation which is for all practical purposes exdusively employed is
the Mallet system, first introduced on the Baltimore & Ohio in 1904.
These engines were cross compounds having a tractive force working compound
of 71,500 lb. and have proved to be the forerunners of many others, culminating
in the introduction of the huge Virginian Mallets of 1918, weighing complete
in working order 898,300 lb. and having a tractive effort in compound gear
of 147,200 lb., a figure that has, so far as we know, not again been equalled.
Except for a relatively few small engines, all the early Mallet engines
were compounds for the most part employed steeply-graded lines in heavy!
slow- moving freight traffic, and it was not until 1924 that the first of
the really large simple expansion articulated locomotives appeared in any
number, in which year the Chesapeake & Ohio put into service several
with four 23 in. by 32 in. cylinders, and a maximum tractive effort of 102,500
lb. Actually, the first large simple expansion Mallet was a single engine
built experimentally by the Pennsylvania some time earlier in 1919, but which
has not been repeated. While as compounds the Mallet has been built in large
numbers, except where the loading gauge was of liberal dimensions, their
power was much restncted, due to there being insufficient room for the L.P.
cylinders, which m general were limited to about 40 in. diameter; further
it was found that the compounds were unsuitable for the high speeds required
for general road service, due probably to the difficulty of., getting
sufficiently la:rg;e steam ports for the L.P. cylinders. The Virginian engines
mentioned had 48 in. L.P.cylinders, the largest ever fitted; they could,
however, due to clearance .limitations, only operate on certain parts of
the line. The Chesapeake & Ohio engines can be said to be the precursors
of modern articulated locomotives m the United States, many of which have
attained large proOportions, and of which .one of the more recent we describe
in our .preserrt Issue. While the Mallet design holds the field in North
Amenca and has been used elsewhere, those of the now well-known Beyer Garratt
articulated type have become much in evidence. These engines have met with
considerable success; difficult operating conditions frequently found on
both standard and narrow - gauge lines where high powers in conjunction with
light axle loads,combined with the ability to negotiate tracks of a sinuous
nature are deciding factors in the type of locomotive required. As in the
case of the Mallet, this type has been developed from small beginnings, and
the first engines for the Tasmanian railways of 1908, with a tractive effort
of 16,290 lb., bear no comparison with large 4-8-8-4 engines built for service
on the South African railways in 1929, and having a tractive effort of 89,130
Lb. Fundamentally the Garratt differs considerably from the 'Mallet, and
in certain respects represents a more perfect form of articulation especially
noticeable on sharp curves, when it is seen to accommodate itself well to
the track, due of course to the fact that the locomotive is made up of three
separate units. As both the engine units are quite distinct from the boiler
section, the latter is in no way restricted in size, more especially so far
as the firebox is concerned. In addition, whereas in the case of eight-coupled
engine units wheel sizes are rather restricted, in the case of the Mallet
design, due to the relative positions of the rear unit coupled wheels and
the firebox, no such restrictions oocur with the Garratt system, neverthe1ess,
recent Mallets have been built with 63 in. wheels, while if six-coupled engine
units can be used, then coupled wheels of 70 in. are quite readily accommodated:
Both types of articulation enable engines of great power to. be built on
moderate. axle loads and in companson with two-cylinder engines of normal
design provide four-cylinder engines, while maintaining outside cylinders
and valve gear with relatively low piston loads, hence lighter motion and
lower rail stresses, due to reduced dynamic loadings.
Canadian National Railways. 97
Ten diesel electric shunting locomotives delivered from American
Locomotive Co. for use on Grand Trunk Western RR: 1000b hp; capable
of 60 mile/h running: 0-4-4-0
Personal. 97
H.R. Carver, sales manager with Jonas Woodhead & Sons Ltd., Leeds
had been made a director
Duluth, Missabe & Iron Range Ry. 2-8-8-4 type locomotives. illustration
Duluth is an iron ore port on Lake Superior and locomotives intended
to haul long trains to port. They had 5ft 3in coupled wheels of the Boxpok
type; 26 x 32in cylinders; 9528ft2 total heating surface;
125ft2 grate area
New Pacific locomotives for the L.N.E.R. 99-100.
illustration, diagram (side elevation)
A2/1: four from final batch of V2 built as Pacifics with divided drive
and three independent sets of Walschaerts valve gear. No. 3696 photographed
in workshop livery.
Personal. 100
Frederick Hall, Works Manager of the Superheater Co. Ltd. had been
awarded an MBE
The Battle of the Gauges. 100
Kenneth Brown spoke at a Railway Club Meeting. Refered to the Gauge
Act of 1846 and to the Gauge Commissioners. Argued that the difficulties
at Gloucester were deliberately exaggerated
McEwan, James. Locomotives of the Caledonian
Railway.101-3. 4 illustrations
Continued from page 73. Forth & Clyde Navigation: This was the
name used by the rail transportation section of the Forth & Clyde Canal
Co. for the railways in and around the docks at Grangemouth. The entire
undertaking was purchased by the Caledonian Railway in 1867, and the plant
included two four-wheeled, four-coupled, saddle-tank engines. There is
considerable confusion in the records concerning these two engines, as they
appear to have been mixed up with the two General Terminus Railway ones,
Nos. 116 and 117. These two engines were built in 1862 and either were the
product of Barclay & Sons of Kilmarnock or of Sharp, Stewart & Co.,
Manchester, although the latter name is the more doubtful. When new they
had plenty of brasswork around their boiler and chimney and coupling-rod
ends. The cylinders were probably 12 in., but nothing is definite about them.
Repairs appear to have been done at Stirling in C.R. days, and the engines
were confined to their original location for their whole lifetime on the
C.R. They bore the names Carron and Grange, which they kept
for a time after the purchase, if not altogether. The C.R. numbered them
116 and 117, and in 1875 renumbered them 668 and 669. They were sold in 1876
and 1877 respectively.
Caledonian Railway.
When the C.R. had acquired the locomotives of the S.C. and the S.N.E. railways
they had to make several replacements at once, and apart from two classes
of passenger engines they removed the mid- feathers with ,all speed. Mr.
Conner himself did n~t take any active part in the coal-burning expenments,
as already indicated, but he followed closely the experiments of others.
As coal-burnmg fireboxes became the standard practice on the C.R. the shape
of the arch was for some time the diffi- culty. In a number of engines the
arch had too much rise and the expansion of the bricks caused these to get
distorted and fall. This failure was not uncommon in other spheres until
the general form of the arch was developed successfully. Some time towards
the end of his active connection with the company, Conner is said to have
tried a steel firebox, but without any great success Very few of the Caledonian
engines were ever tried experimentally with the "gadgets," perhaps on account
of the misfortune with the 2-2-2 engine which came from Barclay's and built
on the patent system of Ure.
The original stock of the line was now being renewed, and fonthe next few
years several replace- ments were got and some additions made to the capital
stock of engines.
In 1867 there appeared from St. Rollox works the first of an enlarged edition
of the 6 ft. 2 in. 2-4-0 :type passenger engine. The series were built to
work in conjunction with the 8 ft.passenger singles on the .main line express
turns and were given 7ft. 2 in. coupled wheels. The cylinders were outside
and the type was of the usual standard design. The springs on the driving
axles were fitted with a compensating beam. The boilers of the first five
were given raised firebox casings with the dome and Salter type safety-valves
on the firebox. The remainder of the class got flush-topped boilers, and
when the entire class was rebuilt, the flush-top boiler was used throughout,
being similar to the previous flush-topped one in size, although those. fitted
to the six engines from Neilson's were of an entirely different external
appearance. The Neilson made boilers had lasted some ten years longer than
the St. Rollox made ones, and they were not in consequence renewed until
Lambie's term of office. The cylinders of the class were 17 in. diameter
by 24 in. stroke. The coupled wheels were 7 ft. 2 in. and the leading wheels
3 ft. 7in. diameter respectively. The wheelbase was 7 ft. 1½ in. plus
8 ft. 7 in., total 15 ft. 8½ in. The flush boiler barrel was 4 ft. 2
in. diameter outside and had 150 tubes 2 in. diameter. These gave a heating
surface of 834 ft2., to which the firebox added
a further 86 ft2., making a total of 920
ft2. The grate. area was 14.4
ft2. Working pressure, 140 psi. These details refer
to Nos. 108 to 112 and 466 to 471 as built, and Nos. 98 to 102 and 108 to
112, also when rebuilt. Nos. 466 to 471 were rebuilt with the standard Drummond
80 class 4-4-0 or 419 class 2-4-0 rebuild boiler, which had a heating surface
of 939.02 ft2 total. As built the class had the
following axle weights: leading, 9 tons 19 cwt. 1 qr.; driving, 12 tons 7
cwt.; rear coupled, 10 tons 12 cwt. 2 qrs.; making a total of 32 tons 18
cwt. 3 qrs. When rebuilt the six Neilson engines had a total weight of 33
tons 19 cwt. The class when new were efficient engines, but never excelled
themselves on the Carlisle road. Shortly afterwards they were transferred
to the North road, where they held sway for many years. Some ultimately returned
to Carlisle for local traffic. The six Neilson .engines were sent direct
to Perth for the North road, as will be observed by the numbering. After
the general transfer of the class to the North the shedding of the class
was: Aberdeen, Nos. 98 to 100; Dundee, Nos. 101, 102, 108 and 110; Stirling,
Nos. '109, 111 and 112; Perth, Nos. 466 to 471. The Dundee engines were to
be seen very frequently in St. Rollox shed; as there was an uncompensated
turn from Dundee which prevented the engine returning the same day. The Perth
engines in their latter days were used very often as pilot to Forfar on trains
from Perth. The six Neilson engines after their rebuilding were amongst the
smartest and neatest engines running an the system, and their lines were
often admired by those interested in railways. The drivers, too, had a good
word far the class. Many people officially regarded these engines as being
of class 30, but in many ways there was a decided difference, and the earlier
built engines were the mare lively of the two, lots. When built the class
had the largest diameter of coupled wheel of any engine in the country. For
a short time in the early Drummand period same were tried an the Clyde Coast
trains, but they did not appear to, be suitable and were sent back to, their
depots. As to, the rebuilding of the Neilson Iot, Nos. 118 and 119 got closed
splashers , while the others retained the open vent type. No. 117 got a Lambie
type bailer, whereas the others got Drummond type bailers which, apart from
the location of the safety-valves, were similar.
No. | Maker | Date | WN | Rebuilt. | Renumbered | Withdrawn |
98 |
CR | 1867 | 1878 | 98A in 1897, S. No. 1222 | 1899 |
|
99 |
CR | 1867 | 1879 | 99A in 1897 | 1898 |
|
100 | CR | 1867 | 1881 | 1897 |
||
101 | CR | 1867 | 1874b | 101A in 1897, 1223 in 1898 | 1900 |
|
102 | CR | 1867 | 1882 | 112 in 1897 | 1906 |
|
108 | CR | 1868 | 1879 | S. No. 1224 | 1898 |
|
109 | CR | 1868 | 1878 | |||
1885b | 1225 in 1899, 56 in 1899 | |||||
1109 in 1902 | 1907 |
|||||
110 | CR | 1868 | 1878 | 1226 in 1899 | 1900 |
|
111 | CR | 1868 | 1881 | 1227 in 1899, 1111 in 1900 | 1900 |
|
112 | CR | 1868 | 1878 | 102A in 1897, S. No. 1218 in 1898 | 1899 |
|
466 | Neilson & Co. | 1868 | 1382 | 1894a | 117 in 1876, 1117 in 1912 | 1913 |
467 | Neilson & Co. | 1868 | 1383 | 1892c | 118 in 1876, 1118 in 1912 | 1914 |
468 | Neilson & Co. | 1868 | 1384 | 1892c | 119 in 1876, 1119 in 1912 | 1915 |
469 | Neilson & Co. | 1868 | 1385 | 1894c | 120 in 1876, 1120 in 1912 | 1914 |
470 | Neilson & Co. | 1868 | 1386 | 1893c | 121 in 1876, 1121 in 1912 | 1913 |
471 | Neilson & Co. | 1868 | 1387 | 1894c | 122 in 1876, 1122 in 1912 | 1914 |
a=Lambie type boiler. b=Brittain type boiler.c=Drummond type boiler.
Illustrations: C.R. 2-4-0 No. 101 (1867) as built. H. Ogilvie, driver, on
footplate; 98 class 2-4-0 No. 101 as rebuilt; 2-4-0 No. 122 (ex-No. 471)
rebuilt with Drummond type boiler (D. Littlejohn); 2-4-0 No. 117
(originally No. 466) as rebuilt with Lambie boiler
Tanganyika Railways. 103
A new report by the Chief Mechanical Engineer of the Tanganyika Railway
and Ports Service gives some details of the work carried out by the workshops
since they started converting passenger aircraft into military planes soon
after the start of the war. The first order was for stars and crowns for
the locally-recruited officers of the armed forces, and at first it caused
consider- able difficulty. The work was almost given up when it was learned
that an expert coiner had just been released from prison. He was quickly
enrolled and soon turned his knowledge and expert craftsmanship to something
better. Many hundreds of stars and crowns were in this way produced. Other
work undertaken at the beginning of the war was the manufacture of machine-gun
mountings, mechanism for the synchronised firing of aircraft guns, parts
for a locally-designed bomb-sight, and, later on, mobile engine repair platforms.
At the beginning of 1940 the shops began work on Bren gun tnpods, uniform
buttons and badges, air raid Sirens, .field cooking pots and rifle pull-throughs.
At the same time, the Kenya & Uganda Railway workshops were also busy
on varied jobs, and when they ran short of matenal for the trench mortars
they were making, the Tanganyika Railways collected, tested and supplied
about one hundred old railway axles. It was interesting to note the name
on them was Krupp. A little later, when the Kenya & Uganda Railways started
to manufacture land mines, the Tanganyika shops undertook to make the machined
parts for these in order to achieve the maximum output. Another urgent call
was for the transformation of a passenger train into an ambulance train.
Seven vehicles were needed, each with 28 bunks, and the work was completed
in five and a half days. In twelve weeks the shops also made 50 river pontoons
that were used at the crossing of the Juba during the Abyssinian campaign.
In 1941, the work completed included quantities of land-mine firing assemblies,
land-mine firing assemblies shear pins, earth rammers, mechanical transport
towing ropes, parts for rifle cleaning, water carriers and aiming rests.
These heavy demands by the military continued during 1942, when it became
necessary to assist in the production of plant and spare parts for local
industries.
L.N.E.R. 103
The last surviving L:N.E.R. 4-4-0 of Class D13-No. 8039-was withdrawn
from service in March. This class, which was formerly G.E.R. Class T19, was
introduced by James Holden in 1886, between which year and 1897, a total
of 110 engines of the class were built. The original design was of the 2-4-0
type, with coupled wheels 7 ft. 0 in. diameter, cylinders 18 in. by 24 in.,
boiler diameter 4 ft. 3 in., and weighing 42 tons. Between 1902 and I904,
twenty-one of them were rebuilt with 4 ft. 8 in. diameter Belpaire boilers
and improved cabs, and weighing 45 tons 9 cwt. They ran in this condition
until their withdrawal between 1913 and 1920. No. 769 was the first engine
to be so rebuilt, and was the first to go to the scrap-heap. Between v roo
; and 1908 a further sixty of the class were similarly rebuilt, but were
fitted with leading bogies and lengthened frames, thus producing a useful
secondary main line class. The weight of these rebuilds was 48 tons 6 cwt.
The first example of this series was No. 1035. From 1913 the majority
of them were superheated. Rebuilding was discontinued in 1908 on account
of the greater superiority of the Claud Hamilton 4-4-0 class, so that twenty-nine
engines of the class were scrapped in their original condition between 1908
and 1913. The withdrawal of the 4,4-0 rebuilds commenced in December, 1922.
On the outbreak of WW2 only three remained in service.
H.F. Hilton. Stephenson letters of 1844. 104-6.
illustration
Since compiling the "White Horse of Kent" article
which appeared last April, I have perused more letters relating to business
in which Robert Stephenson was engaged. Some of these throw interesting light
on another of this year's centenariesthe opening of the Norwich &
Yarmouth Railway.
On the 1st May, 1844, this railway was opened to the public after the promoters,
officials and their friends had enjoyed travelling on the line the previous
day and had dined together in the evening. Robert Stephenson was present,
as shewn by one of Starbuck's letters to the works. manager at Newcastle,
dated 27th April, 1844. "Mr. Robt. Stephenson has gone to Norwich and I am
therefore unable to shew him the drawing. E. F. S." This short railway, 20t
miles in length, connecting the two towns from which it derived its title,
was for about 14 months isolated from any other line, the nearest railway
being at Colchester, 63 miles away. It was practically level and there were
no large engineering works. The station at Yarmouth (afterwards known as
Vauxhall to distinguish it from the East Suffolk Railway terminus at South
Town) remains much as it was originally built. It was the first railway in
England to be provided with the electric telegraph for working traffic by
means of messages.
A letter from Starbuck to Professor Wheatstone, whose address was 21, Conduit
Street, Regent Street, London, dated June 1, 1844, states: "Sir, My friend
Mons. Clarke, Iugénieur-en-Chef of the Paris & Orleans Rly. of
about 90 miles and for some time in operation, has pretty much decided on
applying the Electric Telegraph to the whole length. In consequence of Mr.
R. Stephenson's advice it is his intention in a few days to proceed to the
Norwich &Yarmouth Rly. E. F. S." For a time it was thought probable that
the N. & Y.R. would be of 5 ft. gauge to correspond with the Eastern
Counties and Northern & Eastern, but unfortunately the "Battle of the
Gauges" with Stephenson as chief exponent of the narrower gauge decided
otherwise.
The contractors for the construction of the line, Messrs. Grissell &
Peto, had their headquarters in Belvedere Road, Lambeth, London, with Mr.
Morton Peto as resident engineer in offices at St. Michael-at-Plea, Norwich,
and they were responsible to the company for providing the locomotives.
It is stated in Volume 10 page 2, that
there were five engines, "Nos. 1 and 2 probably being contractors' engines
used in the construction of the line, and there is no record as to what they
were like." In fairness to the late A.C.W. Lowe, the author of the
Locomotives of the Great Eastern Railway, from which the above quotation
was taken, I would state that a considerable number of the early records
of Robert Stephenson & Co.'s locomotives were destroyed about the time
he was writing his instructive and accurate articles, and as the book from
which I have extracted information was rescued from destruction the particulars
I have now given were denied to him. One of the letters indicates that these
two engines came from Stephenson's: '
"E.J. Cook, Esq., Messrs. Robt. Stephenson &. Co., Newcastle, London,
12 Feb., 1844. Dear SirMr. Peto says 'Commence the Shear Legs at once'.
Your Yarmouth engine goes away easily WIth 120 tons, he speaks in the highest
terms of them, he will send names for them soon. E.F.S." In all probability.
these two engines were also used m the construction of the Norwich &
Brandon and other lines on which Messrs. Grissell & Peto were engaged
and never became railway company's property. On May 17, 1843, a contract
was made between Messrs. Grissell & Peto and Robert Stephenson &
Co. to build three engines similar (except for the name) to the White Horse
of Kent; they are those referred to as Nos. 3, 4 and 5 in Mr. Lowe's history.
.
On 16 Jan., 1844, the following letter was sent to the contractors: "Dear
Sirs-I have the pleasure to acknowledge receipt of your favour of yester-
day enclosing copy of a letter from Mr. Till regarding the delivery of the
Locomotive Engines for the orwich &Yarmouth Rly. In reply I beg to say
that you may have the engines at any time you want them. E. F. S."
Mr. Till was the treasurer of the railway; he had offices at Guildhall Buildings;
Norwich. On 9 March the Works Manager received instructions to dispatch the
engines and on 25 March Messrs. Grissell & Peto were written as follows:
"Dear Sirs -I now beg to enclose you two Invoices and two Bills of Lading
for 2 Engines and 2 Tenders and a set of Shear Legs shipped from Newcastle
to you per 'IsabellaHeron' Capt. Dixon to Yarmouth, the vessel will sail
to-day or to-morrow. The amount of the Invoices for the Engines and T en-
ders is £3,600 for which Messrs. Robt. Stephenson & Co. have drawn
on you two Bills at 6 months' date which you will oblige by accepting and
return- ing to me. E. F. S. W. W."
The third engine and a number of spare parts were shipped a few days later
per "Princess", Capt-, B. Thompson, to Yarmouth.
A few weeks after the opening a letter dated 7 June, 1844, was sent to Mr.
Cook containing the following passage: "A Norwich Engineer who has carefully
examined your Engines and seen them run called on me; he speaks in unqualified
praise of their performance and says each engine appears to have some little
improvement on its predecessor."
On the 16th July, 1844, contract No. 239 was made with Robert Stephenson
& Co. to supply six passenger engines of 2-2-2 wheel arrangement having
6 ft. driving wheels, outside cylinders 15 in. by 22 in. ; four goods engines,
0-6-0, with 4 ft. 9in. wheels and inside cylinders 15 in. by 24 in.; ten
tenders, each with six wheels, holding 950 to 1,000 gallons of water. It
specified that all the engines should be constructed on Mr. R. Stephenson's
new patent system with long boilers and to be fitted with his "variable expansion
system". This "patent system" refers to the arrangement of the wheels and
provides for them to be placed in the frames between the smokebox and firebox.
The cost of the passenger engines was £1,500, the goods £1,600
and the tenders £300 each respectively, all of which were to be delivered
in June, 1845.
One of these passenger engines was derailed between Harling and Thetford
when working an up passenger train on 24 December, 1845, causing the deaths
of the driver and fireman.
It has been stated by W. R. Jenkinson in his "Predecessors of the G.E.R.",
published in the G.E.R. Magazine, that the engine concerned was named
White Horse of Kent, and he gives J,S his authority for this statement
an extract from The Railway Record which is as follows.
"In the report of his investigation of the accident General Pasley commented
adversely on the construction of the engines and at the Annual Meeting of
the N.R. in February, 1846, one of the Proprietors spoke on the subject as
follows: 'On General Pasley's return from the inquest he rode on an engine
of similar construction to that which he had condemned as rocking like being
on the ocean which he (the speaker) thought a very apt simile, as the General
was evidently all at sea on the subject himself, and did not find it to rock.
In fact he believed that the White Horse of Kent was an exception
to the rule as regards the rocking and that the General had formed his opinion
on the exception rather than the rule.' "
This quotation in itself is insufficient to prove the name of the engine,
and it may be that it refers to the class, as engines of the White Horse
type are mentioned in the Stephenson letters. Probably General Pasley had
ridden on the engine of that name working on the Dover line and was comparing
its running with that of the Norfolk Rly. engines. It can, however, be taken
for granted that this type of engine did not give good results; the short
wheelbase, flangeless driv- ing wheels and overhanging weight at each end
of the frames tended towards unsteady running, especially on the light permanent
way which then existed, and it would certainly have caused repairs to be
frequent and excessive.
The following letter refers to names of engines, but I am unable to say to
which it applies: "E. J. Cook, Esq. Newcastle. 24 July, 1844. My Dear
SirThe Contract you now have for the Norwich & Yarmouth Co. for
10 engines does away with the 6 for delivery in the Summer of 1845 spoken
of by .Mr. Peto. This Gentleman thought you were under some mistake as to
which of the Engines were to bear the names of George Stephenson and Robert
Stephenson, Will you refer to Copy of their Instructions sent you on 1st
inst." "At Lynn there is a Crane which will take 9 Tons. If Mr. Till should
comment on the prices of the 10 Engines you can state that they were determined
by Mr. R. Stephenson and that it includes Freight, Insurance, Delivery, etc.,
besides. which the Driving Wheels are large and the general dimensions also.
E. F. S."
This refers to contract No. 239 mentioned previously.
Messrs. Grissell & Peto were also contractors for the Norwich & Brandon
Railway, which was opened in the following year.
This line commenced at a junction with the N. & Y.R. about a quarter
of a mile from the Norwich terminus, and runs through undulating country
for 37 miles to Brandon, where it connected with the Eastern Counties Railway
Co.'s extension from Newport, Essex, through Cambridge and Ely, the whole
length from Newport to Trowse, a distance of 83 miles, was opened on 30 July,
1845, and to the Norwich terminus a few months later. The engineering works
were somewhat heavier than on the N. & Y.; four river bridges were necessary
on the Norwich area, one of which at Trowse was of the swing type on account.
of traffic on the river. The illustration of Trowse swing bridge shows the
original structure as it appeared in 1902, a year or so before it was replaced
by a double line bridge operated by electric power. The locomotive on the
bridge is G.E.R. No. 117 of No. 1 class built by Sharpe & Co. in 1871,
and is hauling a train to Wells.
The first bridge was constructed to carry engines weighing about 30 tons
and for 60 years it stood the increasing strain of engine loads up to 90
tons before it became dangerous. In addition to protection by fixed signals
which were interlocked with the bridge, a "bridge~an" , wearing a distinguishing
armlet who was also responsible for "working" the bridge rode on the engine
of each train, and his presence on the engine was the driver's authority
to proceed. As the Yarmouth & Brandon Railways were amalgamated in the
latter part of 1844 under the title of Norfolk Railway whilst the Brandon
line was being constructed, and after orders had been placed with Stephenson's
for engines for both lines, it is impossible to state definitely to which
line they were first allocated. The correspondence shews that some of the
6 w.c. engines when new did their first work in the construction of the Brandon
line and probably two of tihem were shipped to Lynn (now known as King's
Lynn) and taken by road to some point, possibly Brandon, where work had been
started. Later engines ordered for the Bran- don line were shipped to Yarmouth
and erected there before Trowse swing bridge was opened. It is recorded in
"Predecessors of the G.E.R." that the Bill for the construction of the Brandon
line met with no opposition and received the' Royal Assent on 10 May, 1844.
The contractors were evidently so optimistic and anxious to complete the
work that on 26 February, 1844, nearly three months before official sanction
was given, they made a contract for three 6 w.c. engines to be delivered
in from three to four months' time.
The contract is numbered 214 and is as follows:
"London, 26 February, 1844. Contract for Three Locomotives and Three Tenders.
Between Messrs. Grissell & Peto and Messrs. Robert Stephenson & Co.
We hereby agree to supply Messrs. GrisselL & Peto for the service of
the Norwich & Brandon Railway Company Three Locomotive Engineson, our
Patent plan and Three Tenders. The Engines to be mounted on Six Wheels all
of which are to. be combined and the Tenders are to be mounted on Six Wheels.
The price of .the Engines to be £1,600 each and that of the Tenders
£300 each for delivery and mounting at Yarmouth. Both Engines and Tenders
shall he of the very best construction, finish and material, combining every
Improvement and Perfection as recently adopted by us. One of these Engines
to be ready for shipment at Newcastle-on-Tyne in twelve weeks and the other
two in sixteen weeks. The Cost of each Engine and Tender to be paid for in
cash on delivery. Signed Edward F. Starbuck for Robert Stephenson & Co.
Illustration: Trowse Swing Bridge, near Norwich.
Institution of Loco. Engineers. Locomotive
axleboxes. 106-8.
Very extensive precis of Paper
447 in Volume 34; A comprehensive paper on locomotive
axleboxes was presented to the Institution in London by E.S. Cox, Member.
The author pointed out that the design, manufacture, operation and maintenance
of the large number of bearings involved is an important part of the work
of the Mechanical Department, especially in the case of the coupled boxes
which are subject to such a variety of fluctuating forces. as to render them
something quite apart from journal bearings as normally understood in engineering
practice. The service given by these axleboxes is one of the major controlling
features in locomotive availability.
There are three principle factors which directly affect such availability
so far as axleboxes are concerned:
1. Rate of wear.
2. Number of failures in trafficalmost entirely in the form of hot
boxes.
3. Time taken for repairs.
These factors are in turn affected by:
(a) Inherent characteristics such as loading, design, choice of material
and lubricating oil, method of lubrication, repair procedure, etc.; and
(b) Incidental failure in individual cases due to. human element, defective
material or accident.
The greater part of the Paper was devoted to (a) and referred to the experience
of the L.M.S. Railway. In view of the many abnormal features of war-time
operation, it was confined, with one or two exceptions, to the period before
the present war.
Referring to the bearing pressures of coupled axleboxes, it was pointed out
that whereas on carrying wheel bearings of all kinds the pressure per sq.
inch of projected area due to the static weight of the vehicle is the measure
of journal loading, in coupled axleboxes the maximum pressure is in- creased
and altered in point of application by the loading due to pis tun thrust
when steam is on. It has always interested the author to see this latter
factor only casually referred to in many publica- tions on the subject, and
comparative tables are sometimes given of coupled bearing pressures based
on static load alone.
To express the piston thrust effect in a representative way is far from easy,
since it varies through- out each stroke as the steam is expanded, and also
from time to time throughout a run as speed, steam chest pressure and cut-off
vary. None the less this piston thrust effect can produce and sustain for
long periods a resultant load on the bearing not only several times that
due to vertical loading alone, but acting in the case of certain designs
in a direction not many degrees above the horizontal centre line, being resisted
by a portion of the bearing ill fitted to take it. Since driving boxes are
the most heavily loaded of all they were considered in some detail, and the
forces to which they are subject in the case· of inside and outside
cylinder engines shown diagrammatically. Inspection of these diagrams showed
that the resultant force on the boxes varies with cylinder disposition. Nearly
the whole of the piston load, modified by leverages, is transmitted through
the driving boxes of inside cylinder engines, no matter how it is subsequently
divided up among the other coupled wheels. In the case of outside cylinder
engines the effect of piston load in the plane of the driving box is greater
than for inside cylinders because of the transverse leverages across the
engine, but of that greater load, part is distributed direct down the side
rods to the other wheels, and only part comes on to the driving box. Final
resultant loads are thus somewhat lower in the latter case.
There is a small but clear advantage for the outside cylinder arrangement
based on maximum values alone. The average value of the loading throughout
a revolution is more markedly in favour of outside cylinders. If for each
angular position of the crank, the value of the resultant of vertical load
and piston thrust be plotted for one revolution, the area beneath the curve
can be used as a comparative "work factor".
This improvement is turned into a large one if advantage is taken of the
outside cylinder arrangement to provide longer beanngs. This has not always
been done for the sake of standardising axlebox sizes, and the inside cylinder
bearing length is limited by the presence of the crank axle. A length of
11 in. is usual on recent L.M.S. design, and with axleboxes 8½ in. x
11 in. the maximum bearing pressures on the outside cylinder enzine become
558 and 499 lb./sq. in. for R.H. and L.H. boxes respectively, a reduction
of 35 per cent. over the average for the inside cylinder driving boxes. There.is
another way in which the resultant axlebox loading is more severe with inside
cylinders and normal disposition of cranks. The angle at which the resultant
load acts varies throughout each revolution, but not at a uniform rate. With
inside cylinders its acts for nearly half a revolution within a range of
angles averaging not more than 30 deg. above the horizontal centre line.
It then rapidly reverses to produce a similar concentration of loading on
a relatively small angular range on the opposite side of the bearing. In
other words, the box takes a. pounding down near the horizontal centre line
and is only momentarily loaded on the vertical centre line, under the particular
conditions of working in question.
For outside cylinders conditions are more favourable and the angle at which
the resultant load acts passes fairly evenly round the surface of the bearing
and back again during the course of revolution. There is a heavier loading
on the axlebox on the same side of the engine as the leading crank. This
is not because any component of the resultant load is greater in magnitude
at a given angular position just because it is acting on one box instead
of the other. It arises from the way the different forces add up throughout
a revolution when one crank is 90 deg. ahead of the other. If the cranks
were spaced at 180 deg. this inequality would not occur. The other major
force affecting axlebox wear is that arising from wheel flange forces when
the engine is traversing a curve or when oscillating on a straight track.
This force is transferred directly to the wheel boss and axlebox face, subject
only to slight modification due to the flexibility of the wheel centre. It
can reach high values when the engine is grinding round sharp curves, or
at high speeds on curved or straight track on engines in- sufficiently controlled
by their guiding wheels. The author knows of no means by which this force
can be calculated, depending as it does as much on track as on engine
characteristics. Direct measurements have been made in France, India and
elsewhere, and values up to'15 tons were obtained on the leading boxes of
engines without ~uidiIlg wheels or with insufficient bogie side control.
There is reason to believe that on a well-designed engine having fore and
aft guiding wheels with adequate side control, loads up to about five tons
are obtained.
The axlebox load arising from brake application was left out of consideration
since its value is lower than the maximum due to piston thrust and is not
applied when steam is on.
Theory indicates that coupled axlebox loadings are very variable and can
reach high values. The load is irregularly applied throughout each revolu-
tion, and the incidence of the greatest load often falls on a part of the
bearing near the horizontal centre line on a surface usually ill-designed
to take it.
The inside cylinder engine is at a disadvantage, but it would not be correct
to condemn it out of hand. Obviously, if the bearing pressure on such engines
could by any means be made as low as on outside cylinder engines, other things
being equal, then there should be no difference in their bearing performance.
There is a way of approaching this, by placing the coupling rod crank-pins
on the same centres as the adjacent connecting-rod cranks-in other words,
to apply to inside cylinder engines the same relative disposition of cranks
and side rods as obtain with the outside cylinder arrangement.
The resultant loadings are more in line with out- side cylinder values, but
three objections can be raised to its adoption.
(1) More revolving balance weight is required in the wheels, since with the
ordinary arrangement the big-end portion of connecting-rod partially balances
the weight of the side rods. This increase may be 800 lb. on a large 0-6-0
engine and takes the form of unsprung weight.
(2) The bending moment in the crank axle is increased, and the stress in
tons per sq. in. may increase accordingly by as much as 50 per cent.
(3) The inequality in loading between the boxes on the two sides of the engine
is increased.
The second is probably the real reason why so obvious an improvement has
not been more widely adapted. With solid crank axles it is a very real obstacle,
but with suitably designed built-up cranks, where evidence of movement usually
precedes development of flaws, it seems quite feasible. The arrangement was
introduced by Stroudley, but the author is doubtful if any engines so fitted
remain on the Southern Railway. To the best of his knowledge there is only
one example of' this arrangement in main line service to-day, namely, the
ex-G.E.R. inside cylinder 4-6-0 engines on the L.N.E.R. These engines appear
to have been the only really successful inside cylinder 4-6-0s in the country,
as evidenced by their survival on important work, and this fact appears
significant. continued pp. 122-4.
E.A. Phillipson. The steam locomotive in traffic. XII. Rostering of enginemen, depot correspondence, conditions of service for staff in Great Britain. 108-111. 3 tables
Correspondence. 111-12
The North London Railway. James F.
Vickery.
Re C.W. Williams' letter, page 48, I am somewhat surprised at his
statement: Nos. 1, 5, 6, 7, 25 and 42 were rebuilt and not broken up at the
dates shown." From my own copious notes and recollection I agree that Nos.
1 and 25 were rebuilt (No. 1 In 1882 and 1895, and. No. 25 in 1883) but I
always was under the firm impression that the others were scrapped in the.years
when, apparently, new engines appeared bearing their numbers, viz.,
Nos. 5 and 7 in 1890, No. 6 in 1894; and No. 42 in 1893. I well remember
six all apparently new in shop grey coming out in 1890, viz., 5, 7,
23, 24, 26 and 27. At the end of that year old Nos. 26 and 27 stood awaiting
scrapping at Devons Road. To the end they were almost in their original
condition, in green livery, but fitted with cabs. But whereas No. 27 still
had a brass dome, No. 26 had a plain round top dome painted green. Both retained
their sandboxes on top of boiler, and No. 26 still had a copper cap to chimney.
Of course, I am not contradicting Williams' statement, as there was
very little difference between a so-called rebuilt engine and a brand new
one, but the number plates showed the engines as rebuilt or just Bow Works
as I have enumerated above. The information on the date plates cannot always
be regarded as actual fact in this matter, as, for instance, in the case
of the first ten L.T.S. type 4-4-2Ts built new subsequent to the Midland
absorption of that very progressive little line, Nos. 2110-2119 built in
1923, although the date plates stated "rebuilt Derby" 1923, they were of
course new machines. As a youth I often noticed "new" N.L.R. engines in shop
grey with the wheel centres of old locomotives, and: on the other hand, "rebuilt"
ones, also in shop grey, with new cast steel wheel centres with the more
graceful crescent-shape balance weights.
British locomotive builders. R. Abbott
Re The Locomotive for 1927 there appeared a list of British
locomotive builders past and present; SInce then additional makers have been
mentioned in various journals, and I have come across others in correspondence
with friends. Additional notes are available about the firm of Dick &
Stevenson; their address was Airdrie Engine Works, Bel! Street, Airdrie.
Established 1790, closed down 1890, and buildings dismantled soon after.
Said to have built exactly 100 locomotives, mostly to a standard design,
0-4-0ST, with 14 in. cylinders; some went to SIngapore and one to Poland.
I am indebted to Mr. Pearce Higgins for this information, which he gathered.
locally.
The following fourteen makers were not noticed In the 1927 article:
Blackie & Co., Dundee. Built for the Aberdeen Railway.
Carrett Marshal! & Co., Sun Foundry, Leeds. built for the Kendal &
Windermere Railway.
Clayton & Shuttleworth, Lincoln. Built a few locomotives of traction
engine type for industrial railways.
R. Daglish & Co.. Wigan. Built for the St. Helens Rly.
Gibb & Hogg, Airdrie. Built industrial locos.
Gourlay, Mudie & Co., Dundee. Built for the Aberdeen Railway.
Leeds Foundry Co., Leeds. Built for the Blyth & Tyne Railway. [KPJ: difficult
to identify]
McHendrick & Ball, Glasgow. Built industrial locos. with vertical boilers.
Mills Forge Co. Built for the St. Helens Railway.
J. M. Rowan & Co.., Glasgow . Built for the Pollok & Govan and Wishaw
& Coltness Railways.
Sandys, Carne & Vivian, Copperhouse Foundry, Hayle. Built for the Hayle
Railway.
W. Sisson & Co., Ltd., Gloucester. Built the engine- bogies for the Cardiff
Railway rail-motors,
Simpson & Co., Dundee. Built for the Aberdeen Railway.
Joseph Smith. Built for the Stockton & Hartlepool Railway. I have not
been able to fix the location of the works of the Mills Forge Co., or of
Joseph Smith, but perhaps Joseph Smith is the same firm as J. Smith of Bradford
who, on page 104 of "The Locomotive" for 1927 were said to. have ordered
the Tantalus from the Haigh Foundry .and supplied it to. the Grand
Junction Railway.
"Railmen's holiday." W.G. Tilling. 112
Re. Morris's article, "Railmen's Holiday:", in which he mentions No.
203 Henry Fletcher working one of the specials from London Bridge.
My father was a personal friend of Mr. Pierpoint, the stationmaster at London
Bridge, and went to. Eastbourne as a guest, and I well remember, as a schoolboy.
asking him to. make a note of the name of the engine. When he told me, on
his return home, that it was a brand new engine named Henry Fletcher
, I was quite excited. The date would be about June, 1897.
Reviews. 112
Who, wrecked the Mail? By C. Hamilton Ellis. Humphrey
Milford
The author describes in considerable detail an imaginary railway in
Spain. The hero is appointed locomotive superintendent and the story deals
with a plot to sabotage the line so. that the British company working it
would lose its concession through inefficiency and German interests take
over: this plan is, of course, discovered and foiled by the locomotive
supermtendent. As might be expected of the author. the technicalities of
railway working are described in a convincing manner, and the interest and
excitement is well sustained to. the end. One of the best railway yarns we
have read. A word of praise might be added for the well-drawn and very attractive
dust-cover.
James Watt and the Industrial Revolution. H.W. Dickinson
and H. P. Vowles.
Published for the British Council, deals with the life and achievements
of James Watt, and paints a background of the conditions prevailing during
his time. Such background is essential to enable one to. fully appreciate
his achievements, the difficulties to. be overcome m attarmng them and his
influence upon the industrial era. The matter is presented in a more condensed
and easily digested manner than some previous accounts of the life of Watt,
and will, no. doubt, be read by those m search of information both upon James
Watt and the industrial and economic conditions which his work so largely
affected.
Early railways in Surrey. Charles E. Lee.
London: The Railway Gazette. 112
Works of this well-known writer on early railway matters exemplify
much painstaking research, and the booklet under review-which is the text
of a paper presented to. the Newcomen Society in 1940. and reproduced by
the courtesy of that Society's Council is no exception. The raiilways concerned
are the Surrey Iron Railway and its continuation, the Croydon, Merstham &
Godstone Iron Railway. To. what length the author is prepared to. go. in
pursuance of facts is well demonstrated by his chartering a 'plane to. carry
out an aerial survey of the more important town sections of the route traversed
by this first example of a public railway, which was also the first of any
kind in the neighbourhood of the Metropolis. It is gratifying to be able
to add that from the air a nearly continuous track may be traced. The Surrey
Iron Railway has received a large amount; of notice and publicity, much of
a contradictory nature, but there is no. doubt that the subject has never
been so. fully investigated or so. lucidly dealt with as it is in the present
publication. The work is well annotated and the authoratably assisted, as
he acknowledges, by his wife and father- has succeeded in bringing to light
much information hitherto. overlooked. Among the Iittle-known matters may
be mentioned the part that both the S.I.R. and the C.M. & G.R. played
in the series of quarrels that the old Brighton Railway had with its Eastern
and Western neighbours, The illustrations are of interest and the whole forms
a complete work of reference which all students of early railway history
will wish to. add to. their collection.
Locomotives of the Somerset & Dorset Railway and
the Irish narrow gauge railways. M.C.V. Allchin. 12pp.
List of the numbers, types and building dates of the railways mentioned
in the title, together with the number allocated to. the individual engines
when absorbed by the larger groups. Twelve illustrations add to. the booklet's
interest.
G.E.R. detailed loco stock list. C. Langley
Aldrich. 32 pp.
A list of the numbers, classes and dates of the Great Eastern Railway
locomotive stock compiled from an official register dated 1April, 1921, with
some notes on subsequent additions..
Historical models. 112
W.H. Smith, of Bingley, has offered his valuable collection of engine
models to. the Bingley Urban Council. The collection includes locomotives.
mill engines, portable and semi-portable enginesall working models.
Many readers will remember the magnificent North Eastern model shown at the
Railway Centenary Exhibition at Darlington.
Sierra Leone Railways. 112
The pioneers who built Sierra Leone's single track in 1896 could never
have imagined the work the railway is doing to-day, and the way in which
the problems created by the demand for the Colony's iron ore have been solved
is a tribute to. the versatility of the workshop men. One of the most notable
achievements has been to. rebuild locomotives to. give greater pulling power,
and Sierra Leone now boasts the only eight-coupled Garratt of standard gauge.
Another rebuilding job is a tank engine that now has ten coupled driving
wheels. It was necessary to convert these locomotives because supplies from
Britain could be sent only to standard specifications, while replacements
of any kind were virtually unobtainable. Parts that would normally be scrapped
are being reconditioned by welding. Parts beyond repair are being replaced
by castings made from scrap metal. At the same time the greatly increased
traffic has meant a much higher rate of wear and tear, and every aspect of
locomotive and rolling stock repair work has been stepped up.
L.N.E.R..
Three further class B1 4-6-0. engines were in service, No. 8307 Black
Buck, No.. 8308 Klipspringer and No.. 8309 Kudu,
Number 624 (15 August 1944)
Locomotive design and train operation in the future.
113.
Proposed 2-8-2 version of V2, but with smaller coupled wheels, but
larger than those fitted to P1 to operate faster mineral trains. Express
locomotive design would depend on whether a policy of fast frequent services
were required or heavy, but infrequent services. The former could be met
by 4-6-0s, but the latter required Pacifics. See letter
from D.H. Miles
Modified 4-6-0 "Hall"-class engine. 114. illustration,
diagram (side & front elevations)
No. 6959 illustrated painted in unlined black without a name: new
plate frame bogie and separate castings for cylinders
Baldwin 2-8-0 locomotive built for Russia. 115. illustration
Loaded onto a bogie flat car for transport to docks: named
Stalingrad.
Review. 115.
The steam locomotive, its theory, operation and
economics. R.P. Johnson. New York: Simmonds-Boardman Publishing Co.
564pp.
The author of this work was the Chief Engineer of The Baldwin Locomotive
Works, and he states that this book has been written to present in convenient
form certain fundamental facts regarding locomotive theory and
operationthe object has been admirably achieved. The information has
been gained from many sources, most of which would be inaccessible to residents
here [in UK]; the convenience resulting from having this collected in one
book is enormous. There are 29 chapters dealing comprehensively and,
of course, accuratelywith the many sides of the subject. Some of the
headings will be familiar enough, e.g., Combustion, Superheat, Valve Gears,
Horse Power, Resistance, etc., but each theme is treated in a refreshingly
explicit and very practical form. We say refreshingly explicit because, for
example, the derivation of formulae (and their use) is explained; writers
too frequently assume that their readers are more familiar with such matters
than is actually the case.
Many of the chapters deal with subjects which previously have been omitted
from the literature of the subject; in some instances due to their being
problems of comparatively recent advent. Included in this category are High
Speed Trains, Streamlined and Light Weight Trains, and Motive Power for High
Speed Service.
There is an excellent chapter on Locomotive Testing and another valuable
one on Dynamometer Cars. Among chapters relating to the economics of the
subject may be mentioned The Relation of Locomotive Operating Expense to
Net Operating Income, and Economic Life. Locomotive Testing Apparatus, the
Derivation of Economic Life Formula, and Typical Locomotive Dimensions form
the subjects of appendices. The author has most carefully compared
diesel-electric and steam power, the characteristics of both being fully
and fairly presented.
From what has been said it will be apparent that the author has collected-
a wealth of most useful information and by incorporating this in one volume
has bridged some of the gaps previously existing in locomotive literature.
This book, well illustrated where necessary, will be of great value to the
rnany between the locomotive builder and designer at one end of the scale
and the student at the other.
Illumination of engines undergoing repairs. 115-16. 2 illustrations
Air raid precautions led to the Home Office demanding restrictions
on illumination. The LNER overcame this by constructing light tunnels where
work could continue and inside these mobile illuminants could be used using
heavy duty batteries on trolleys. Illustrations show these trolleys and a
B12/3 replete with electric lighting fitted to its boiler.
J.C.M. Rolland. An episode in locomotive history. Victorian
Railways. 117. illustration
Richard Speight, the Assistant General Manager of the Midland Railway
became Chief Commissioner of the Victorian Government Railways in 1884. He
pursued a policy of standardisation aiming to limit locomotive types to:
main line passenger, main line goods, light line passenger, light line goods,
suburban tank and a six-coupled shunting engine. Jeffreys, an iron founder
from Leeds, got Kitson's to draw up designs. This led to a six-coupled
locomotive WN 3089 and a 2-4-2T WN 3088 being exhibited at the Melbourne
Centenial Exhibition: they were named Victoria and Tasmania.
These were followed by twenty D class 4-4-0 locomotives fromn the Phoenix
Foundry at Ballarat in 1887-8; thirty Y class heavy 0-6-0, 25 E class 2-4-2T
and 15 A class express passenger 4-4-0. Robinson Brothers, Campbell &
Sloss of South Melbourne supplied 25 R class light freight 0-6-0 in 1890-1.
25 further E class were supplied by Phoenix plus a further 25 from David
Munro & Co. of Melbourne. The final 5 standard locomotives were 0-6-2T
shunters.
O.J. Morris. By rail to the Devil's Dyke Hotel. 118-20. 3 illustrations
(including diagram/plan)
The Brighton & Dyke Railway Co. built a branch line which rose
at 1 in 40 to 500 feet above sea level, about 200 feet below the summit.
This was worked by the LBSCR: push & pull working was rarely employed
because of difficulty with water supply at the summit. The Southern Railway
used a Sentinel railbus for a time. The gap between the railway terminus
and the summit was closed by the 3ft gauge Dyke Steep Grade Railway which
opended on 24 July 1897 and closed in about 1908. This was designed by Charles
Blaber (who may not have been an engineer) and built by Courtney & Birkett.
It was powered by a Hornsby Akroyd oil engine. The ravine was also crossed
by a cable car.
Obituary. 120.
Frank Dudley Docker and
R.M. Deeley
The North London Railway. 120-2. 2 illustrations
Previous part pp. 84-6
In 1894 Pryce resumed the construction, at Bow, of the standard 4-4-0 type
passenger tank engine which class had by this time become regarded as the
most suitable type of locomotive for working North London services. Twenty-four
more of these engines were built, details of which are given below
72 | 1894 | 240 |
36 | 1894 | 241 |
44 | 1894 | 246 |
71 | 1894 | 247 |
6 | 1894 | 248 |
1 | 1895 | 249 |
68 | 1895 | 250 |
69 | 1895 | 251 |
2 | 1896 | 252 |
25 | 1896 | 253 |
81-84 | 1896 | 254-257 |
85-87 | 1897 | 258-260 |
88 | 1898 | 261 |
89/90 | 1899 | 262/263 |
1/2 | 1906 | 322/323 |
3/4 | 1907 | 324/325 |
It will be observed that two of these locomotives carried the same
numbers as earlier engines of the same type, which were, as a consequence,
renumbered. No. 4 had the distinction of being the last of locomotive to
be built by the North London Railway. This last batch of engines had the
same dimensions as those built during Park's regime in their rebuilt condition.
Some of them were rebuilt at Bow, and the dates thereof, together with new
Works numbers then allocated to them, are as follows
: Vorks TO. on Rebuilding 3II 320 36 1905 44 1906 71 1910 6 1909 337
Running No. | Date of rebuilding | Works number on rebuilding |
36 | 1905 | 311 |
44 | 1906 | 320 |
71 | 1910 | |
6 | 1909 | 337 |
All of them except No. 2 (of 1896) lasted until the passing of the
North London Railwa) as a separate entity and the followmg paragraph gives
details of the fate of the individual engmes concerned.
No. 72 became 2858 in the L.N.W. list in 1923 and L.M.S.R. No. 6470 in November,
1926, and was broken up at .Crewe in 1928. No. 36 became 2829 in the L. &
W. list in 1923 and L.M.S.R. No. 6465 in May, 1927, and was scrapped in 1928.
No. 44 became 2837 in the L. N . W. list in 1923 and L.M.S.R. No. 6468 in
April, 1926, and was scrapped at Crewe in 1929. No. 71 became 2857 in the
L.N.W. list in 1923 and L.M.S.R. No. 6469 in February, 1927, and was scrapped
at Crewe in 1929. No. 6 was to have become L.N.W. No. 2805 but never carried
that number. In March, 1927, it became L.M.S.R. No. 6445 and in 1929 was
withdrawn from traffic and sent to Derby for prervation, but was eventually
broken up there in September,1932. No. 1 (of 1895) was renumbered 125 in
1906 and became L.N.W. No. 2872 in 1923, and was allocated L.M.S.R. No. 6443
but the last mentioned number it never carried, beining broken up in 1925.
No. 68 was allocated L.N.W. No. 2854, but never carried it and became L.M.S.R.
No. 6462 in December, 1923, and shared with N.L.R. No. 5 (L.M.S.R. 6444)
the distinction of being painted in the red livery of the amalgamated Company.
It was broken up inI 1925. No. 69 became 2855 in the L.N.W. list in
1923, and was allocated L.M.S.R. No. 6463, but never carried it and was broken
up in 1926. No. 2 (of 1896) was renumbered 126 in 1906 and was withdrawn
from traffic in 1909 and scrapped in the following year. No. 25 became L.N.W.
No. 2819 in 1923 and was allocated L.M.S.R. No. 6442, but was scrapped in
1926 without carrying the latter number, No. 81 became L.M.S.R. No. 6499
in June, 1927, and was broken up at Crewe in 1929. It was to have become
L.N.W. No. 2861, but it never ran in this guise. No. 82 was broken up in
March, 1923, as L.N.W.R. No. 3650. It was allocated L.N.W. No. 2862 and L.M.S.R.
No. 6500, but never carried either of these. No. 83 was broken up in September,
1923, as L.N.W.R. No. 3629. It was allocated.L.N.W. No. 2863 and L.M.S.R.
No. 6501, but did not run in either condition. No. 84 became L.N.W. No. 2864
in 1923 and was allocated L.M.S.R. No. 6502, but was withdrawn in 1926 without
carrying the latter number. No. 85 became L.N.W. No. 2865 in 1923 and L.M.S.R.
No. 6503 in January, 1927, and was scrapped at Crewe in 1928. No. 86 was
scrapped in February, 1924 without bemg renumbered, although it had been
allocated L.N.W. No. 2866 and L.M.S.R No. 6504. No. 87 became L.N.W. No.
2867 in 1923 and L.M.S.R. No. 6505 in July, 1926, and was broken up at Crewe
in 1928. No. 88 became L.N.W. No. 2868 in 1923 and L.M.S.R No. 6506 in January,
1927, and was broken up at Crewe in 1928. No. 89 became L.N.W. No. 2869 in
1923 and was broken up in 1926 without being numbered in with the L.M.S.
stock, although it had been allocated the No. 6507 by that Company. No. 90
became L.N.W. No. 2870 in 1923 and L.M.S.R. No. 6508 in May, 1926,
and was broken up at Crewe in 1929. No. 1 (of 1906) became L.N.W. No. 2800
in 1923 and L.M.S.R. No. 6509 in May, 1926, and was broken up at Crewe in
1929. No. 2 (of 1906) became L.N.W. No. 2801 in 1923 and L.M.S.R. No. 6510
in June, 1927, and was broken up at Crewe in 1929. No. 3 became L.N.W. No.
2802 in 1923 and L.M.S.R. No. 6511 in October, 1926, and was broken up at
Crewe in 1929. No. 4 became L.N.W. No. 2803 in 1923 and was broken up in
1926 without being renumbered by the L.M.S., although it had been allocated
the No. 6512 in that Company's list. Fig. 30 shews No. 1 of this class, whilst
Fig. 31 shews No. 88 at the head of a N.L. passenger train on the Alexandra
Palace branch of the G.N.R.
Institution of Loco. Engineers. Locomotive
axleboxes. 122-4
Previous part of precis pp. 106-8.
Very extensive precis of Paper 447 in
Volume 34. The four types of coupled axleboxes in use on L.M.S. locomotives
were illustrated and the following comments made on them.
The steel with pressed in brass was standard on the old L.N.W., but bearing
performance was below standard due to insufficient size, excessive loads
and inadequate oiling arrangements. The box of this type, now standard on
all new L.M.S. construction since Sir William Stanier's advent, derived more
from G.W. design and contained features which have 'raised locomotive bearing
performance to a very high level. These are:
Generous bearing and radiation surfaces and low unit loading.
Thin white metal lining unbroken by brass strips or oil grooves.
Deep underkeep with large oiling pad.
The liability of anyone of the engines so fitted to run a hot coupled bearing
is once in ten years per locomotive, so that the bogey of the hot bearing
has been practically exorcised.
When. however, this design of box has been applied to engines having high
loads with inadequate bearing size, it has not been especially successful.
The steel or wrought iron box with loose brass was a specialitv of the old
Midland Railway: it has little virtue. The additional surfaces increase the
places where wear can and does occur. and the heat transfer away from the
bearing is poor.
The object of the manganese bronze box was to obtain good thermal conductivity
without the disadvantages of the solid brass box. After many years of experience,
however, its disadvantages seem to outweigh its advantages. As the manganese
bronze is too soft to take a pressed in brass and is not itself a bearing
metal. it is necessary to confine the white metal by bronze strips dove-tailed
into the parent metal. These strips, even if carefully fitted into their
grooves, and suitably located with pegs, tend to come loose in time and disturb
the white metal. Where inside collars are fitted to the axles, this is
particularly likely to happen, and where an engine is a heavy one with big
sIde thrusts on the boxes disintegration is inevitable. '
The example may be quoted in this respect of the 70 Royal Scot engines, built
with this type of box in 1927-30. In 1932 there were no less than 102 hot
boxes. They were replaced by steel boxes WIth pressed m brasses to the original
overall dimensions and to the same design as the Stanier engines m 1934,
the collars being at the same time turned off the axles. In 1939 'the total
number of hot boxes was six. The conversion was thus successful where unit
loading was low. Where heating occurs manganese bronze boxes often become
deformed, and in such circumstances they have to be scrapped.
In the case qf solid bronze boxes, since this is a bearing metal no strips
or white metal are needed on the flat surfaces when the box is new, and it
gives also most excellent thermal conductivity. It has been stated that such
a box will run at 10°F lower temperature than a non-ferrous box otherwise
identical. 'Where high bearing pressure is inevitable this may offer real
advantage. On the other hand, high capital value is permanently locked up
by its use, and after a few reboring's from a higher centre line the whole
box must be scrapped and replaced, which is a waste of man hours even although
the bulk of the material is recoverable. It is also weak mechanically unless
it is made very heavy.
After referring to the composition of the white metal used on the L.M.S.
in peace-time conditions, * the author dealt with the disposition of the
bearing metal. Whatever the general design -of the box, the arrangement of
the bearing surface itself regarding the extent and thickness of the white
metal lining can be independently varied. For many years the deep pocket
shrouded with brass all round held the field. This deep pocket allowed the
brass to be rebored from successively higher centres a considerable number
of times be- fore the white metal eventually became too thin . -On the other
hand, it was not customary to machine the bottom of the deep cast-in pockets,
so that bondmg of the white metal to the brass was -often poor, with subsequent
failure of the bearing.
In 1932, Sir William Stanier brought on to the L.M.S. the conception of the
thin layer of white metal not shrouded at the sides, but only at the ends,
thus allowmg the brass to be machined before the metal was applied to ensure
a perfect bond. To give increased surface for effective bonding this machining
took the form of serrations, six to the inch.
The shrouding all round previously necessary to prevent the thick white metal
from spreading under load was no longer necessary since tendency to :spread
almost vanishes if the metal lining is made sufficiently thin.
This arrangement brought with it the further advantage that with suitable
adjustment of the oil supply arrangements the actual bearing surface could
be made to consist of an unbroken white metal surface. This design has proved
entirely satisfactory where bearing pressures have. been reasonable, although
at the cost of increased machining hours.
Some controversy has, however, surrounded its application to the heavily
loaded bearings, the claim bemg made that as the metal wore thin under the
constantly repeated blows of the piston load effect, the presence of the
serrations initiated disintegratlon of the metal. This, however, is very
difficult to prove or disprove, many white metal surfaces '.'caught m the
act" showing crumbling in lines at right angles to the serrations.
Improvements in bonding due to research in methods and control do, however,
seem to avoid the need for serrations altogether, and the latest L.M.S.
arrangement is with 1/8 in. thick metal bonded to a plain
machined surface.
Actually it is necessary to allow an upwards tolerance on this value. There
are practical reasons why this upper limit should be as high as possible,
and a point on which information is still sought is what is the maximum thickness
such an unshrouded lining can attain before the metal begins to flow and
extrude along the length of the bearing under the effect of load.
Dealing with lubrication, the author stated that the main points are: ~
(a) Quality of oil.
(b ) Method of supply, i.e., trimming feed or mechanical lubricator.
(c) Method of application to journal. .
Particulars were then given of the five oils used on the L.M.S. in recent
years.
The first of these oils was and still is the general standard which has proved
satisfactory with all. normally loaded bearings, and is the oil associated
with the good bearing performance given by the modern steel boxes with pressed
in brasses. The use of this oil compounded with free fatty acid instead of
rape was undertaken as a precautionary measure so as to have a ready alternative
should there be any interruption in supply of rape under war-time conditions.
With mechanical lubrication it can be said to have given fairly satisfactory
results, but with trimming feed some adjustment in the number of trimmings
was found desirable since this compound has not in general such good syphoning
properties.
The next two oils described were attempts to deal with the problem of the
overloaded bearing where a greater film strength and degree of that elusive
property "oiliness" was obviously desirable to withstand the pulsating and
heavy loads on the large inside cylinder engines.
The use of superheater cylinder oil may seem an unusual approach. Although
open to criticism as a bearing oil, it was, introduced on to the 0-6-0 Cl.
4 freight engine at a time when heated bearings were becoming especially
troublesome arising from a variety of factors. It was in fact successful
in arresting the upward trend, although it produced no actual improvement.
It could, of course, only be used with a mechanical lubricator, and has now
been superseded.
A welcome reduction in hot boxes on overloaded bearings has, however, resulted
from the introduction of oil which not only was compounded with 15 per c~nt.
of rape, but was specially produced by the oil companies to meet the particular
conditions of the case, and was based on investigations onginally carried
out by the L:N.E.R. This oil is now standard for certain classes of engine,
but is more expensive than the other oils. Straight mineral oil is used on
engines wholly engaged on shuntmg where runs are very short and average box
temperature are probably low, even although with a high degree of full gear
working , resultant box loadings are high.
Without going any further into this very controversial subject, it seems
probable that beanng performance improves within limits with improvement
in quality of oil, and indeed provision of the best oil obtainable seems
to be the only palliative in the case of overloaded bearings. Rape oil is
the most satisfactory compounding medium and is especially desirable when
trimming feeds are used because it promotes ready syphoning. It also undoubtedly
assists in providing continuity of lubrication where the oil film tends to
become broken down by reciprocating loads. Whether the modern moderately
loaded bearings would run satisfactorily on straight mineral oil is a debatable
point. There seems no reason why they should not.
In dealing with the pros and cons of mechanical and trimming feeds, the author
pointed out that two railways employ the former in their latest designs,
one employs the latter, and the remaining company uses neither, nor indeed
any type of feed external to the axlebox itself. The G.W.R. has dispensed
with upper feed entirely on its modern engines and relies solely on underkeep
and pad for coupled axlebox lubrication, the pad in this case being of felt.
That railway has, however, a preponderance of outside cylinder engines with
generous-sized bearings. The felt or worsted underpad, like the trimming,
is subject to variation of feed depending on vis- cosity and any variations
in quality of oil and textile as delivered. If this .is relied on alone to
lubricate the bearing it is probable that a higher standard of control and
periodic inspection of these items is necessary than in the case of the
mechanically-fed engine.
A possibility which has not been explored very far is that of conducting
heat away from the bearing by circulation of an excess volume of oil, by
means of an axle-driven pump contained within the keep itself. There is a
proprietary brand of American axlebox which takes this idea a certain distance.
The maintenance of boxes was dealt with at some length, and mileages between
shoppings quoted for various classes, after which bogie, pony truck and tender
bearings came in for notice. As the author pointed out, the only available
alternative to the plain bearing is the roller bearing, and locomotive engineers
are viewing this with considerable interest, having regard to its increasing
use in the U.S.A. in all types of axle box, both carrying, coupled and tender.
The bearings of this type fitted to the L.M.S. Turbomotive were then illustrated
and described.
The paper, which was well illustrated by drawings and photographs, and contained
many useful tables and graphs, was summed up by six conclusions as follows:
(1) Bearing pressure arising from combination of static weight; piston thrust
and the area of bearing surface is the most important factor in performance
and should be as low as. possible.
(2) The large inside cylinder engine as normally designed is the most
unfavourable type from this point of view. Moving the coupling rod crankpins
on such engines through 180 deg. will give improvement at a certain cost
in other directions. The outside cylinder arrangement allows of the lowest
unit pressures obtainable for given conditions of piston thrust and static
weight.
(3) The design of axle box should include generous dimensions, thin white
metal lining and well lubricated underkeep. Above all it must provide for
rigidity, as loose strips and loose brasses give trouble whatever the axlebox
size and loading.
(4) Given the conditions in (1) and (3) above, considerable variations in
class of oil and white metal, and in method by which oil is fed to the bearing
seem possible without much variation in performance.
(5) By suitable design in new engines the hot box problem for the plain bearing
can be said to have been solved, with a recorded liability of not more than
one hot box per engine in ten years. The potential mileage of such boxes
before wear requires shopping is about 70,000 miles on the average, with
in- dividual performance both above and below under different conditions
of service.
(6) There seems little hope of bringing the bearing performance of the inherently
over-loaded types anywhere near the above level, whatever design of plain
bearing is, adopted. Use of the best quality of oil procurable with a 15
per cent. rape content is the best palliative so far discovered.
U.S.A. railways. 124
Several locomotive sheds on the New York, New Haven & Hartford
R.R. were having ordinary glass windows removed and glass bricks built in
to take their place, The Denver & Rio Grande Western Railway had
completed the continuous welding of 17,000 ft. of track through a single-track
tunnel. The New York Central R.R. had ordered an experimental locomotive
with a 4-8-4 wheel arrangement. The Pennsylvania R.R. installed an automatic
coach washer capable of cleaning the exteriors of 200 cars per day. The plant
was erected in the Philadelphia coach yards
Stephenson Locomotive Society. 124
Recent lectures and papers have been the Presidential address in London
by J.N. Maskelyne, entitled "What of the Future?"; "Newcastle and the
Locomotive," by J.W. Hobson, General Manager of Robert Stephenson &
Hawthorns, Ltd., at Newcastle; and a practical address on "Engine Failures,"
by A.G. Dunbar at Glasgow, where, by courtesy of the L.M.S. Company, the
Society's meetings are held in the Board Room, Buchanan Street.
L.M.S.R.. 124
Ceremony at Lichfield where 4-6-2 locomotive No. 6250 was named City
of Lichfield by The Mayor.
H. Fayle. The Dublin & South Eastern Railway and
its locomotives. 125-7. 2 illustrations
Continued from page 59).The D. W. & W. Railway obtained powers
in 1877 to construct a branch line to New Ross from Palace East, a point
an the newly-acquired line 2¼ miles short of Ballywilliam; it was opened
far traffic on 19 September 1887, and it was intended ta carry it on to
Waterford, fifteen miles beyond, but this did not come about far same time.
In the meantime the company was now left with the unremunerative short branch
from Palace East to Ballywilliam, where an end-an junction was made with
the G.S. & VV. Railway; after some years of working, terms were arranged
to lease this short line to the G.S. & W. Railway, who took over the
working from 1 October 1902; since this date G.S. & W. Railway trains
worked through from Bagnalstown to Palace East, but this section is now in
use for goods traffic; only.
The main part of the receipts of the D. W. & W. Railway were derived
from the suburban traffic at the Dublin end of the line which is the most
intensive of its kind anywhere in Ireland; the main suburban development
of Dublin has been an the south along the coast as far as Greystones, a distance
of seventeen miles, and the company had two routes serving this district.
The main line, from Harcourt Street terminus, united with the coast route
from Westland Row at Shanganagh Junction, 1½ miles from Bray. Both these
routes had generally an hourly service throughout the day, with extras in
the morning and evening, certain trains proceeding to Greystones, though
the service beyond Bray was by no means so frequent. Between Dublin and Kingstown
there was an half-hourly service of stopping trains, in addition to the through
trains proceeding to Bray, which generally made but one stop, at Blackrock,
between these points. .
The company also handled the important cross-channel mail traffic between
Dublin and Kingstown, the boat trains running alongside the steamers at Carlisle
Pier. Westland Raw station was, however, unconnected by rail with the other
Dublin termini, and several schemes were put forward, at various times, to
remedy this defect. Eventually, in 1887, the City of Dublin Junction Railway,
jointly guaranteed by the D.W. & W. Railway, G.N Railway (I) and the
City of Dublin Steam Packet Co. (the holders of the mail contract}, was
authorised to construct, 1¼ miles of line connecting Westland
Row and Amiens Street stations and continuing to make a junction with the
Midland Great Western Railway Northwall branch at Newcornen Junction .. By
means of the latter access was obtained to the G.S. & W. Railway system,
so making it possible to run through carriages to and from Kingstown Pier
and the three main Irish railway systems.
Though the connecting line was but a short one, the construction was very
expensive, as it ran an the high level, and included several viaducts, the
largest of which crosses the River Liffey. It was opened for traffic on 1
May 1891, and was worked by the D.W. &-W. Railway, and the latter company
also provided the engine power for working the G.S. & W. Railway mail
trains between Kingstown Pier and Kingsbridge. A new station, known as Amiens
Street Junction, was provided adjoining the G.N. Railway (I) terminus at
Amiens Street,
and has three through platforms; from this date most of the local trains
to Kingstown and Bray were altered to start from Amiens Street Junction.
In connection with the new line, Westland Row station was rebuilt; previously
it had been a somewhat dark shed with three platforms; as reconstructed,
it was considerably lengthened and provided with five platforms, two of which
have through lines for trains proceeding to the Loop Line; though not too
well situated, it handles the largest traffic of any station in Dublin, and
has somewhat overgrown its accommodation; since the ·closing of Broadstone
station from January 17, 1937, the main line trains to the M.G.W. section
of the G.S. Railways have also used it as a terminus.
Following the construction of the Loop Line, the War Department laid cfown
a siding to the Victoria Wharf, Kingstown, in order to facilitate the conveyance
of troops and luggage from the interior of the country; it was completed
in 1892. The Royal Dublin Society, in the year following, built, at their
own expense, a short branch line connecting their show premises at Ballsbridge
with the D.W. & W. Railway at Lansdowne Road, the latter company. agreeing
to work the line; during the show periods, a special shuttle train service
was run over the line, connecting with the ordinary trains at Lansdowne Road.
In connection with the proposed establishment of .a new short steamship crossing
from Rosslare to South Wales, a separate company, the Waterford & Wexford
Railway, had built a line from Wexford to Rosslare, which was opened for
traffic on June 24, 1882; it made an end-on junction with the D.W. &
W. Railway at Wexford, and' was worked by the latter company up to May 17,
1889, when it was practically closed, being only in occasional use after.
This line was reopened on 6 August 1894, in connection with the Fishguard
& Rosslare Railways and Harbours scheme, but the D.W. .& W. Railway
had no further hand in the working. This latter scheme was indirectly the
cause of the construction of the last portion of the D.W. & W. Railway.
As already mentioned, the line ended at New Ross, and the remaining fifteen
miles to Waterford remained unbridged. The London & North Western Railway,
who controlled the Holyhead route to Ireland, feared that their South of
Ireland traffic would be adversely affected by the new Rosslare scheme, as
this was guaranteed by the Great Western Railway of England and the G.S.
& W. Railway of Ireland.
The L. & N.W. Railway had already some financial interest in the D.W.
& W. Railway, and they now urged the latter company to complete their
line to Waterford, so as to provide access to that port independent of the
G.S. & W. Railway. Actually a new company, the New Ross & Water-
ford Extension Railway, was incorporated on August 6, 1897, to construct
the line, which was opened for goods traffic on 15 February 1904, and for
passenger traffic on 27 April. This line joined the new line from Waterford
to Rosslare at Abbey Junction, half a mile from Waterford, where the G.S.
& W. Railway station was used by the D.W. & W. Railway trains; until
the opening of the new station in 1906, the D.W. & W. trains had to run
round the old terminus, which faced west, and then reverse into a bay provided
for their special use.
Under the terms of the G.S. & W. and Waterford,. Limerick & Western
Railways Amalgamation Act of 1900, the D.W. & W. Railway had been granted
running powers between Waterford and Limerick, and these they now proceeded
to exercise; a daily goods train was run between Waterford and Limerick Junction,
and although a certain amount of traffic was obtained, the venture proved
unremunerative, and came to an end about 1908. For a time, however, there
was considerable competition between the two companies for the Waterford
to Dublin traffic. The D.W. & W. route was six miles longer, and considerably
harder, having long banks of 1 in 60 between Macmine and Waterford, so after
a few years the passenger service was reduced; this company was, however,
the first to provide refreshment cars on the Waterford to Dublin service,
a facility which has been continued up to the present day on this route.
Under the terms of the lease of the Dublin & Kingstown Railway, the D.W.
& W. Railway had been paying a rent of £36,000 for the use of the
line between Dublin (Westland Row) and Dalkey, although they had been under
the expense of adapting the atmospheric portion from Kingstown to Dalkey
for locomotive working. There was, however, a clause in the lease that the
terms were subject to revision if a competing railway or tramway were built
between Dublin and Dalkey. A somewhat moribund horse tramway had been operating
over this route since 1878, but as the through journey from' Dublin involved
three changes of car and took the best part of two hours, the railway receipts
had not appreciably suffered . This tramway was electrified in 1896, and
the fares reduced by one-half, becoming a formidable competitor; the railway
fares had, of course, to be reduced, and even then much of the traffic had
gone for good. Finally, in 1906, after protracted negotiation, the payment
under the lease was reduced to £30,000, and from January 1, 1907, the
company assumed the more comprehensive title of Dublin & South Eastern
Railway. As already mentioned, the line ran close to the sea-shore for a
good part of the distance between Dublin and Wicklow; two sections in particular,
between Killiney and Bray, and Bray Head and Wicklow, were particularly subject
to coast erosion. As early as 1856 trouble was experienced at Bray Head,
and some damage was done by a gale to the embankment near Ballybrack, while
two years later the rails had to be moved in ten feet on some portions between
Killiney and Bray. In the 1880s work was started on protective embankments
just north of Bray, while in 1889 the line from Morris' Cliffs to near Greystones
was moved in for about a mile. It was, however, soon apparent that these
measures would not provide a permanent solution of the difficulty, so powers
were obtained in 1911 for two extensive diversions. The first of these started
just south of Killiney station and extended for three miles to Bray Bridge,
including also a short portion of the Harcourt Street line; a new double
line was built from Killiney to Shanganagh, where a junction was formed with
the line from Harcourt Street; this point is some way inland from the original
Shanganagh Junction; the double line continues on to Bray Bridge, where the
original line is rejoined; the total length of new line was 3 miles 31 chains,
and it was fully brought into use on 10 October 1915.
The second part of the scheme was a diversion, about two miles in length,
between Bray Head and Greystones Harbour; this was single line, but proved
a costly and difficult undertaking as it involved a tunnel 1,100 yards in
length, the longest on the system; it was brought into use on 17 December
1917. In both cases the original lines were completely abandoned, and have
by now been washed away by the sea in some places. No further new lines were
constructed after this, the system now comprising 156 miles of route owned
and worked, of which but 33½ miles were double line. Under the general
amalgamation of the railways in the Irish Free State in 1924, the D. &
S.E. Railway became a portion of the Great Southern Railways, and lost its
separate existence. As already mentioned, the largest station was Westland
Row, the original terminus of the Dublin and Kingstown Railway, which had
five platforms, while Amiens Street Junction had three. The other principal
stations, Harcourt Street (Dublin), Bray and Kingstown, were all single platform
erections, long overdue for reconstruction, but so far the only one to receive
attention from the Great Southern Railways has been Bray, which was provided
with a second platform from 10 October 1927. The arrangements at Dun Laoghaire
(Kingstown) are particularly bad, as a frequent service has to be conducted
over but one through road, which also serves the Pier traffic; there is,
however, a terminal bay used by a few trains; the station is a regular
bottle-neck, and considerable delay ensues at times. ( To be continued)
F.C. Dewrance. Midland Railway locomotives. Birmingham
and Derby Junction Rly. 127-30. diagram.
Continued from page 21. The principal constructional features of the
B. & D. engines were as follows:
The outside main frames were of "sandwich" pattern with bolted-on axleguards
to all wheels. similarly to the Tayleur engines, but in this case the frame
curved up to give the necessary height at the driving horns without the lower
portion of the L. & T. guards being excessively long. The L.& D.
springs were above the framing, but the T. springs were under the sandwich
within the axleguards. Unfortunately, neither the drawing nor the other sources
provide full details of the inside frames.
The cylinders were horizontal, with the valves on top operated through
rocking-shafts, whilst the slide-bars were of the normal four-bar pattern
supported from the inside longitudinal frames independently of the cylinders,
from which it is. clear there were four inside frames from the cylinders
to at least as far back as the rear of the slide-bars. The boiler feed was
by long-stroke pumps driven from a downward projection well below the crosshead,
delivery being made to clack-boxeslow down as usual for the
periodbut affixed to the firebox throat-plate in the angle just above
the running plate, a position both awkward and. undesirable.
The valve-gear was of the four-eccentric under-hung gab pattern, with the
Stephenson arrangement of two-shaft gab-litters giving alternate lifting
and lowering; all very similar to the gear as illustrated in Fig. 1.of the
Sheffield & Rotherham engines (THE LOCOMOTIVE, April, 1943) although
these Mather Dixon engines would appearfrom the drawingto have
had the outer pair of eccentrics within the outer pair of inside frames,
the other pair being, of course, located between the cranks. There were,
in addition, rods from the top end of the rocking-levers to the footplate,
where they occupied the customary position of the driver's vibrating levers;
there was, however, provision for maintaining the front ends of the vibrating
rods clear of the rocking-levers, and thus there was no continuous movement
of the vibrating levers when the engine was running as on earlier valve gears,
they only functioning when the driver desired to aid the effect of the taper
leads of the gabs to move the valves when reversing the engme.
The boiler was typical of the time, although the firebox top was raised higher
than usual and it had two domesin which respect it coincided with the
Tayleur practice of the periodbut it is not now known from which steam
was taken. The provision of two domes rather indicates a lack of steam space
in the boiler, and, in fact, Gooch of the G.W. Railway complained of lack
of steam space in the engines which M.D. .supplied to that railway, although
it is clear from the dimensions available in Whishaw that the firebox crown
in the B. & D. (and also North Midland) engines was lower in relation
to the top of the barrel than in the engines complained of by Gooch. An
unresolved point is that in Whishaw's figures of Mather Dixon's engines of
the years 1838-9, the entries for the two sets for the Birmingham & Derby
and North Midland show the tube length as equal to the length of the boiler
barrel: it is a mystery "how it was done" it seems the smokebox tube-plate
must have been in some manner recessed into the boiler barrel.
The whole design of these engines appears light, particularly the- framing,
the main portion of the outside sandwich frames being of less depth than
usual; althoughaccording to the 1841 Returnsthe engines were
no lighter than the similar ones of Tayleur & Hawthorn; whatever the
reason, either the light frame or some feature of the boiler, these engines
disappeared, like their companions of the North Midland, very soon after
the amalgamation of 1844; certainly the motion in general and the valve-gear
were of adequate design for their date, so that it was probablv one of the
before-mentioned features which was the cause. In fact the only Mather Dixon
engine to have an appreciable life was one of the sister singles supplied
to the Chester & Birkenhead Railway, which lasted into the 18705, having
been rebuilt in 1853 and taken over by the G.W.R. in 1860, being illustrated
as rebuilt in THE LOCOMOTIVE, November, 1914, p. 292.
There is no record of any special occurrences with these engines whilst belonging
to the B. & D., with the exception of a caustic reference to supposed
"tinkering" on the part of Mr. Kirtley described (no doubt with adequate
exaggeration) by "Veritas Vincit" in another of his well-known "Letters to
the Editor" on Locomotive Managementwhich perhaps may here be given
in full: "Previous to the Barton being taken to work, the steam was got up
to a very high pressure. From the alterations Mr. K. has made upon this engine,
I believe that she is obliged to be worked at a pressure of nearly 100 Lb.
upon the square inch. The boiler burst below, and the boiling water was exhausted
in a minute, and if either engineman or fireman, or both, had been underneath
they would have been scalded to death. This engine, about ten months ago;
was sent to Leeds to get a new copper firebox, a new set of tubes, and new
cylin- ders. On her return she was put into the shed for the purpose of making
a few more alterations. Mr. Kirtley, like his brother, Mr. Thomas, must have
a dabble at 'improving'. In the fixing of his weigh-bar shaft, he was compelled
to suspend it by a bracket under the boiler, and he knew of no other method
·than screwing the bracket to the bottom of the boiler plating. Owing
to the water no being very good on the Derby line, and from age and corrosion
of the boiler, when the plate was drilled it was only -h in. thickness. He
was told that it would be impossible for this plate to sustain the pressure,
and, besides, the lever that reversed the motion, by his alteration, took
two men to reverse her. The whole of this leverage was hung upon the bracket,
and hence occurred this explosion". For accuracy it should be mentioned here
that quite possibly V.V. was himself in error when stating that the changes
were made to the Barton engine, because the incident was much more likely
to have oocurred with one of the Hawthorn 'engines which had a principal
part of the valve- gear hung' from under the barrel of the boiler. The above
reference, of 1843, to sending an engine to Leeds provides one of the earliest
surviving records of a practice fairly commonplace at the period, of sending
locomotives for heavy repairs to locomotive-buildersgenerally to Leeds
and frequently to Kitsons and to Shepherd & Todd, later E. B. Wilson-and
which persisted well into the 1850s. As, like manv other railways, the Midland
and its constituent lines had various classes of Sharp "singles", and as
no detailed account of the progressive development of the design has hitherto
appeared, it is thought to be of interest to deal with the matter somewhat
extensively here, before describing the B. & Derby Sharp engines.. .
These Sharp singles fall into three principal bars. The boiler feed was by
long-stroke pumps driven from a downward projection well below the crosshead,
delivery being made to clack-boxes -low down as usual for the period-but
affixed to the firebox throat-plate in the angle just above the running plate,
a position both awkward and. undesirable. The valve-gear was of the
four-eccentric under-hung gab pattern, with the Stephenson arrangement of
two-shaft gab-litters giving alternate lift- ing and lowering; all very similar
to the gear as illustrated in Fig. 1. Of the Sheffield & Rotherham engines
(THE LOCOMOTIVE, April, 1943) although these Mather Dixon engines would
appear-from the drawing-to have had the outer pair of eccentrics within the
outer pair of inside frames, the other pair being, of course, located between
the cranks. There were, in addition, rods from the top end of the rocking-levers
to the foot- plate, where they occupied the customary position of the driver's
vibrating levers; there was, how- ever, provision for maintaining the front
ends of the vibrating rods clear of the rocking-levers, and thus there was
no continuous movement of the vibrating levers when the engine was running
as on earlier valve gears, they only functioning when the driver desired
to aid the effect of the taper leads of the gabs to move the valves when
reversing the engme. The boiler was typical of the time, although the firebox
top was raised higher than usual and it had two domes-in which respect it
coincided with the Tayleur practice of the period-but it is not now known
from which steam was taken. The provision of two domes rather indicates a
lack of steam space in the boiler, and, in fact, Gooch of the G.W. Rail-
way complained of lack of steam space in the engines which M.D. .supplied
to that railway, although it is clear from the dimensions available in Whishaw
that the firebox crown in the B. & D. (and also North Midland) engines
was lower in relation to the top of the barrel than in the engines complained
of by Gooch. An unresolved point is that in Whishaw's figures of Mather Dixon's
engines of the years 1838-9, the entries for the two sets for the Birmingham
& Derby and North Midland show the tube length as equal to the length
of the boiler barrel: it is a mystery "how it was done" - it seems the smokebox
tube-plate must have been in some manner recessed into the boiler barrel.
The whole design of these engines appears light, particularly the- framing,
the main portion of the outside sandwich frames being of less depth than
usual; although-according to the 1841 Returns- the engines were no lighter
than the similar ones of Tayleur & Hawthorn; whatever the reason, either
the light frame or some feature of the boiler, these engines disappeared,
like their companions of the North Midland, very soon after the amalgamation
of 1844; certainlv the motion in general and the valve-gear were of adequate
design for their date, so that it was nrobablv one of the before-mentioned
features which was the cause. In fact the only Mather Dixon engine to have
an appreciable life was one of the sister singles supplied to the Chester
& Birkenhead Railway, which lasted into the 1870s, having been rebuilt
in 1853 and taken over by the G.W.R. in 1860, being illustrated as rebuilt
in THE LOCOMOTIVE, November, 1914, p. 292. There
is no record of any special occurrences with these engines whilst belonging
to the B. & D., with the exception of a caustic reference to sup- posed
"tinkering" on the part of Mr. Kirtley described (no doubt with adequate
exaggeration) by "Veritas Vincit" in another of his well-known "Letters to
the Editor" on Locomotive Managementwhich perhaps may here be given
in full: "Previous to the Barton being taken to work, the steam was
got up to a very high pressure. From the alterations Mr. K. has made upon
this engine, I believe that she is obliged to be worked at a pressure of
nearly 100 lb. upon the square inch. The boiler burst below, and the boiling
water was exhausted in a minute, and if either engineman or fireman, or both,
had been underneath they would have been scalded to death. This engine, about
ten months ago; was sent to Leeds to get a new copper firebox, a new set
of tubes, and new cylinders. On her return she was put into the shed for
the purpose of making a few more alterations. Mr. Kirtley, like his brother,
Mr. Thomas, must have a dabble at 'improving'. In the fixing of his weigh-bar
shaft, he was compelled to suspend it by a bracket under the boiler, and
he knew of no other method ·than screwing the bracket to the bottom
of the boiler plating. Owing to the water no being very good on the Derby
line, and from age and corrosion of the boiler, when the plate was drilled
it was only 3/16 in. thickness. He was told that it would
be impossible for this plate to sustain the pressure, and, besides, the lever
that reversed the motion, by his alteration, took two men to reverse her.
The whole of this leverage was hung upon the bracket, and hence occurred
this explosion". For accuracy it should be mentioned here that quite possibly
V.V. was himself in error when stating that the changes were made to the
Barton engine, because the incident was much more likely to have oocurred
with one of the Hawthorn 'engines which had a principal part of the valve-gear
hung' from under the barrel of the boiler. The above reference, of 1843,
to sending an engine to Leeds provides one of the earliest surviving records
of a practice fairly commonplace at the period, of sending locomotives for
heavy repairs to locomotive-buildersgenerally to Leeds and frequently
to Kitsons and to Shepherd & Todd, later E. B. Wilsonand which
persisted well into the 1850s. As, like manv other railways, the Midland
and its constituent lines had various classes of Sharp "singles", and as
no detailed account of the progressive development of the design has hitherto
appeared, it is thought to be of interest to deal with the matter somewhat
extensively here, before describing the B. & Derby Sharp engines..
These Sharp singles fall into three principal groups: the first may be now
termed the "Early" Sharps, the others being contemporaneously known as "Little"
and "Big" Sharps respectively. The first group having 5 ft. 6 in. driving
wheelsexcept the initial set, which had 5 ft. 0 inwith cylinders
from 12 in. by 18 in. to 14 in. by 18 in. and. boiler barrels 8 ft: long;
the second group havmg 5ft. 6 in. and 5 ft. 0 in. drivers with 15 by 20 m.
cylinders and 10ft. barrels, and the third group having 5 ft. 6 in. drivers
with 16 by 20 in. cylmders, 9 ft. 6 m. barrels, but of larger diameter, and
a larger firebox. Besides the various lesser sub-divisions it is necessary
to appreciate that these Sharp engines were not a continuous "run" of practically
the same design; the engines of the early seriesup to the 1842-4
periodwere entirely different from those built subsequently, the only
features in common, apart from the dome and safety-valve casings, being the
form and width 42 in.of the firebox, the position of the dome,
and a general resemblance in the outside main frames. These outside frames
of sandwich pattern, being curved upwards at the driving horns,had the advantage
of less "whip" in the horn-plates or axle-guards of the carrying wheels than
in most other frames of the period, and having flitch-plates in one piece
and thus no bolting-on of horn-plateswas a further advantage.
The earlier group had horizontal cylinders with valves above, placed somewhat
forward of the middle of the cylinder bore, four light inside framings, somewhat
similar to the stylebut really shallow plate-framesof other makers'
engines of the 1836-40 period, slide-bars fixed to the shallow frames and
thus independent of the cylinders; whilst the valve-gear was of the
four-eccentric type having one pair of eccentrics between the outer pair
of inside frames and the inside face of the driving wheels, whilst the pair
of back-gear eccentrics were placed between the innermost pair of inside
frames. Although there were four inside frames, all being straight and running
continuously from the cylinders to the firebox throat-plate, there were bearings
in the two inner ones only, and these were merely steadiers, having no springs.
The mode of applying traction was also the old-fashioned one of a drag-assembly
attached to the firebox. The distinct design from 1843-4 onwards, however,
of the pattern which became so well known and successful, had the usual
arrangement of two inside frames extending from the cylinders to the firebox
with inside bearings and springs upon the crank axle, there being a substantial
cross-member, "motion- plate", connecting both the inside frames and the
outside frames together,the rear end of the slide-bars being attached thereto,
whilst their front ends were attached to the cylinder covers, the valve-gear
being of course the link-motion; also there was a drag-plate across from
the outside frames at the rear and traction was thus applied through the
outside frames and not through the firebox.
There were many more variations in the outside main frames of these well-known
engines than is generally supposed; there actually being no less than seven
distinct varieties, those from the earliest of the type in 1837 to about
the end of 1843-four stylescorresponding to boilers with 8 ft. barrel
lengths, whilst the followingthree stylescorresponded to the
longer boilers. These various styles of frames are shown in Fig. 3; .the
first style corresponding to the engines of 1837 of the Grand Junction Railway
with 5 ft. driving wheels and fireboxes 28 in. long inside and having unequal
leading and trailing wheels; whilst the second style corresponds to the 5
ft. 6 in. engines of 1838-40, havmg fireboxes 32 and 36 in. long inside,
but with equal carrying wheels and two-level frame tops; the third sty le
for similar engines 0 f 1839-41, but having fireboxes 36 and 40 in. long
inside and with the front end of framing modified in form. The fourth style,
which corresponds to the years 1841-2 (possibly also i843) is very similar
in boiler and firebox to the third style, but having the trailing springs
above the running plate, allow- ing the front and rear portions of the frame
to be of equal height; this arrangement of springs and level frame-top continuing
throughout the ensuing styles. It may be noted that during the final phase
of the "early" pattern-the fourth style-the prac- tice of cutting holes above
the leading and trailing horn-spaces began, some of the engines of that style
being so treated and others not; also during the same years 1842-4-and possibly
1845-the dome was sometimes placed upon the middle of the boiler-barrel.
The fifth style corresponds to the 5 ft. 6 in. engines with boiler-barrels
10 ft. long, and dates from about 1843-4, the earlier fireboxes being similar
to those of the previous short-boiler engines, and the framing was not again
varied either in whee1base or form until just prior to the introduc- tion
of the third group. The sixth style is merely a variant of the fifth, the
lesser diameter of the driving wheels, viz., 5 ft., allowing the elimination
of the peculiar humping of the lower edge of the frame to suit the driving
horn-spaces on the 5 ft. 6 in. engines. The seventh style is practically
a combination of the two foregoing in which the strength of the lower portion
of the frame around the driving horns' corresponds to the sixth style, but
with its upper portion suitable for 5 ft. 6 ip. drivers. There were possibly
a few engines built WIth this type of frame in which the wheelbase was similar
to the fifth and sixth styles. The fifth and sixth styles correspond·
to' the "Little Sharps", whilst the seventh corresponds to the "Big Sharps'",
and .the foregoing exposition dearly indicates the considerable differences
which existed between the early Sharpies of the 18 in. stroke and 8 ft. boiler
group and the 20 in. stroke and 10 ft. boiler group which succeeded. Dimensions
have occasionally been published which indi- cate that a few engines may
have been built with a wheel-base intermediate between the earlier and later
groups, and these may have had 9 ft. 6 in. boiler barrels and a wheelbase
of 12 ft. 2 in., i.e., both length of boiler and length of wheelbase being
6 .m . .less. than the traditional Sharp standard. The distribution of the
wheelbase of the early singles, It may be noted, conforms to its evolution
from the fou~-wheel~,~ single, whilst that adopted from 1844-5 is an
'independent" 2-2-2 design. The former phase did not occur in the case of
Stephenson's singles, whose very first 2-2-2 of 1833 was a "full-fledged"
design.
The valve-gear of the early Sharpsof the four-eccentric typewas
in the earlier 1838-40 engines of the opposed-gab pattern, having both
eccentrics, as also the gab-ends of the eccentric-rods and the lifting
mechanism, outside the outer pair of inside framesbetween the
frame and the wheelson each side, the fore-gear rods having the gabs
below and the back-gear being connected above. Although this opposed-gab
gear with gabs linked together and working alternately upon coinciding pinion-
centres, had some similarity of appearance to the link motion, there was,
of course, no means of notching-up. Later engines had an adaptation of the
"Cabry" gear, the fore-gear ecoentrics being between the wheels and the outer
members of the inside frame, whilst the back-gear eocentrics were in the
middle· between the inner pair of 'inside frames, the fore-gear gabs
engaging the upper arm and the back-gear the lower arm of a rocking shaft.
This "Cabry" gear provided a modicum of expansive working by means of a very
deep fore-gear gab in which the gab-pin could be set at an intermediate
(generally only one) position, thus producing a lesser valve movement. In
the particular arrangement used by Sharps this special fore-gear gab was
upon the rocking-shaft arm and the gab-pin was on the end of the fore-gear
eccentric-rod, whilst the back-gear gab was on the eccen- tric-rod with the
gab-pin on the rocker-arm as in normal practice. In neither case were there
any vibrating levers on the footplate. The later Sharps, of course, had the
link-motion, the reversing-shaft being above, and very far forwardalmost
over the leading axlethus giving the advantage of very long eccentric-rods.
It may here be remarked that in all Sharp's own designs the driver's position
was on the left side and the reversing lever placed accordingly, and this
custom persisted to a relatively late date, even in the. case of engines
supplied to the general design of railways having the right-hand position
standardized. The early Sharps had ram-pumps driven off the crosshead gudgeon-pin
between the slide-bars, and whilst the later enlarged design also had ram-pumps
driven from the crosshead, the drive was not between the slide-bars.
The Sharp boiler was of normal construction with the firebox top slightly
raised; in the early group the corners of the firebox shell were not Hanged,
but formed with angle-irons, and the firehole was of the shallow-ring pattern,
whilst the later fireboxes had flanged plates and the firehole was a full-width
ring. The regulator of "butter-fIy" valve type, was, of course, in the dome,
so close to the front that the regulator head was fixed to .the smokebox
tubeplate, whilst support for the boiler at the front end was very substantial
being composed of arch-plates at front and back' of the smokebox straddling
across to the outside frames , Continued page 153.
Gloucester Railway Carriage & Wagon Co., Ltd. 130
A scheme for re-lighting the works had been carried out with highly
satisfactory results by Messrs. John Newth Ltd. Mazda 500 watt lamps in Mazdalux
L.T. type disperive reflectors used throughout. The mounting height was 15
ft. above floor level, the spacing 19 ft. by 16 ft. 6 m. staggered, and the
average illumination 11 foot candles.
Number 625 (15 September 1944)
Light weight rolling stock. 131
Bulleid welded underframe without sole bars and a plastic
superstructure.
Jamaica Government Railways. 131
Canadian Locomotive Co. supplying six 4-8-0 locomotives
Institute of Transport. 131
Opening meeting of Siver Jubilee session to be held 3 October at
Institution of Electrical Engineers when Robert Kelso to deliver Presidential
Address (mainly on road transport into Europe.
Condensing locomotives. 136
See also page 157
The Portstewart Tramway. 138-9. illustration
Due to the inaccessibility of the B. & N.C. Railway station at
Portstewart to the resort of that name, an undertaking known as the Portstewart
Tramway Co., Ltd., was promoted for the purpose of constructing and operating
a tramway for conveying passengers between the station and the town, a distance
of nearly two miles. The hne, which was constructed entirely along the public
highway, was opened for traffic in June, 1882. It was laid to the 3 ft. 0
in. gauge and was single track throughout its total distance of 1 mile 67
chains, except for run-round loops at Portstewart Station and Portstewart
Terminus, and an intermediate crossing-place at Victoria Terrace.
The financial condition of the company became desperate after a few years
of operation, and it eventually went into liquidation, and in March, 1897,
was offered for sale. In view of the value of the tramway, 'as an aid to
the development of Portstewart as a resort, the directors of the B. &
N. C. Railway decided to submit a tender for its purchase by that company.
This tender was duly accepted, and on 1 June 1897 the tramway passed to the
control of the railway. The directors of the B. & N.C. Railway, in their
report for the half-year ending 30 June 1897, stating that "the engineers
have been engaged in improving the line and rolling stock, and it is expected
that in a short time an efficient service will be maintained between your
station and Portstewart Town." This purchase was subsequently confirmed by
an Act of Parliament of 13 July 1899. From the date of its acquisition by
the B. & N.C. Railway the tramway was worked as a feeder service in
connection with the trains to and from Portstewart station.
On 1 July 1903, the undertaking passed into the possession of the Midland
Railway, but was administered from Belfast by the Northern CountiesCommittee
set up by that company. The next change was on 1 January 1923, when the L.M.S.
Railway was formed and absorbed the Midland Railway, including the N.C.C.
Nevertheless, the tramway survived all these changes and continued to perform
a useful service until 31 January 1926, when it was closed largely owing
to omnibus competition and also to the traok requiring renewal, the expense
of which could not be justified in the changed circumstances.
After the closing of the tramway the L.M.S. Railway (N.C.C.) made arrangements
with a local omnibus proprietor to run a 'bus service over the route equivalent
to. that provided by the trams. This arrangement lasted until 1 January 1933,
when the railway company took over the running of the road service themselves.
This, however, proved to be a short-lived venture, as, consequent upon the
setting tip of the Northern Ireland Road Transport Board in 1935, the operation
of the 'bus service passed into the hands of that undertaking.
The rolling stock used on the Portstewart Tramway comprised three locomotives,
two eight-wheeled open top double deck tramcars one four-wheeled single deck
open-sided car, and one four-wheeled luggage van. Dealing first with the
locomotives: these were all built by Kitson & Co., of Airedale Foundry,
Leeds. They were all of that firm's four-wheeled tram engine type.
No. 1, built in 1882 (makers' number T56), and No: 2, built in 1883 (makers'
number T84), were of identical design, They had two outside cylinders of
8 in. diameter and 12 in. stroke placed high up in an inclined position.
The coupled wheels were 2 ft. 4t in. in diameter, and the wheelbase was 5
ft. 0 in. The valve motion was a modification of Walschaerts -gear. The boiler
was of the locomotive type, fitted horizontally; with a diameter of 2 ft.
5 in. and length, including firebox and smokebox, of 6 ft. 9 in., with 72.
flue tubes of I! in. outside diameter. The heating surface was: Firebox,
19.4 sq. ft.; tubes, 96.6 sq. ft.; giving a total of 116.0 sq. ft. The grate
area was 5.17 sq. ft., whilst the working pressure was 160 lb. per sq. in.
Coke was used as fuel so as to avoid unnecessary smoke being given off along
the public highways. The engine was completely encased by a cab and the motion
enclosed by side sheets with doors. Ex- haust steam from the cylinders was
conducted into air-cooled condensers composed of longitudinal tubes connected
by arched transverse tubes carried along on the roof of the cab.
The total weight of the locomotive in working order was about eight tons.
Dual control levers were fitted to enable driving to be done from either
end.
0.3, built in 1901 (makers' number T302), was a more powerful machine than
the other two engines, although of the same general design. It had 9! in.
by 12 in. cylinders, 2 ft. 3i in. diameter coupled whels, a wheelbase of
4 ft. 6in., a boiler of 2 ft. 7i in. diameter with a working pressure of
160 lb. per sq. in. The heating surface of the tubes was 109.96 sq. ft.,
and of the firebox 26.43 sq. ft., making a total of 133.39 sq. ft. The grate
area was 5.72 sq. ft. and the weight in working order 11 tons. This locomotive
is believed to have been the last tram engine built by the firm of Kitson
& Co.
Nos. 1 and 2 were sent to Belfast after the closing of the tramway, and remained
there together in a carriage shed for many years. In April, 1939,. through
the efforts of the late Dr. H. A. Whitcombe, No. 1 was sent to the Museum
of Transport at Hull, where it was to have been preserved for all time as
an example of the steam tram engine, once! in fairly general use on British
tramways. Unfortunately, however, in one of the heavy air raids on Hull the
Museum, together with the tram engine which it housed, was destroyed. o.
2 still remains at Belfast, although the shed in which it is stored was one
of the buildings to suffer damage during the air raid on that city in May,
1941. No. 3 was sold to Warke, a contractor, at Castlerock in 1926, who used
it for supplying steam for driving machinery until 1935, when he dismantled
it for scrap. Portstewart Tramway, Loco No. 3 The engines were painted invisible
green and lined out similarly to the main line locomotives of the N. C. C.
Our illustration shews No. 3 outside the Tramway office and depot at Portstewart
Town. The double-decked tramcars in use on the lme were Milne vehicles built
in 1899, whilst the single. decked car was a Metropolitan Railway Carriage
& Wagon product. All were painted red in later years and after the dosing
of the line they were sold for use as summer houses, etc.
All traces of the tramway have now practically disappeared, as the track
was lifted shortly after the closing.
G.W.R. 139
One of the oldest steam engines still at work regularly is at Crofton
Pumping Station, near Marlborough, on the Kennet and Avon Canal, belonging
to the G.W.R. It is a Boulton & Watt engine and was probably built about
the time of the completion of the canal in 1810. The cylinder is 42 in. diameter,
with a stroke of 7 ft. 9 in., and pumps 240 gallons of water per stroke at
eleven strokes per minute from a depth of 40 ft. The steam pressure is 20
lb. per sq. in.
L.M.S.R. 139
To eliminate overhead lifting equipment, an appliance for wagon lifting
has been installed at the Barassie repair shops. The installation consists
of four electrically- operated lifting units working in pairs; either or
both ends of the wagon can be raised according to requirements.
L.M.S. appointments. 139
Ashton Davies C.V.O., O.B.E retired on 31 August and T.W. Royle
became a Vice President: he had previously been chief operating manager;
and his post was filled by T.H. Fisher, the former deputy. also retirement
of A.F. Bound and replacement by his Deputy W. Wood as Signal & Telegraph
Engineer.
Tapered roller bearings L.M.S. 4-6-2 "Turbomotive" No.
6202. 139. illustration
British Timken Ltd: noted that still in perfect condition and cited
Cox's Paper on axleboxes The turbine
driven 4-6-2 express locomotive, which was designed by Sir William Stanier,
who recently retired from the position of Chief-Mechanical Engineer of the
L.M.S., had completed some 250,000 miles' operation. This was the first
locomotive in Great Britain to be equipped throughout with roller bearing
axleboxes, and when recently attention was given to the gear drive, opportunity
was taken to examine the Timken tapered roller bearings with which all the
axleboxes were fitted, and we are able to give the accompanying illustration
by courtesy of the Chief Mechanical Engineer of the L.M.S., and of British
Timken, Ltd.
The condition of the bearings fully justified Sir William's confidence in
leading the way in the mounting of all axles on anti-friction bearings. All
were found to be in perfect condition. The leading bogie axles
were carried in a split cast steel cannon box. The driving axle employed
two boxes, each with a double row bearing. A point of special interest about
this axle is the ratio of the resultant to the static loads on the bearings,
this being approximately 7 to I. The static load was 22,700 lb. per journal,
but the actual resultant load due to dynamic augment attained 144,000 lb.
The coupled axles were also carried in cannon boxes, incor- porating a single
row bearing of 19 in. outside diameter at each end. The high polish attained
by the rollers indicates their first-class condition.
The Bissel type trailing truck axle was carried in two single boxes, each
containing two single row bearings
O.S. Nock. Automatic train control in Great Britain.
Part 1.140-2. illustration
The fatal collision at Ilford on 16 January 1944, due to a driver
overrunning signals in conditions of bad visibility, led to a revival of
interest in systems of Automatic Train Control. As in previous accidents
of the same kind, notably after the Castlecary disaster of December 1937,
not a few questions have been asked in Parliament, and suggestions for increased
safety measures have been put to the Ministry of War Transport. Before the
war a considerable amount of research and experimental work was being carried
out on certain British railways, and the matter will undoubtedly come to
the fore again when the time arrives for pre-war speed and frequency of service
to be restored. The present position in this country with regard to A.T.C.
merits, therefore, a careful study, and it is a position that cannot be
considered wholly from the locomotive point of view. While complete
standardisation throughout the country may be the ultimate, though very remote
and improbable ideal, the present systems m use are based upon the existing
wayside signalling, and to a lesser extent upon traffic conditions. Before
making any detailed reference to apparatus already in service, it is important
that the fundamental difference between the two existing systems of wayside
signa:lling should be fully appreciated. The Block System is in use on an
overwhelmingly large proportion of this countrys railway mileage. Each
intermediate station along the line has its own signal box, sometimes two
or three, and for each box there is a series of absolute-stop signals' the
"home", the "starter", sometimes an "outer home", and an "advanced starter"
as well. Before a driver sights any of these stop signals he encounters the
"distant", which is only in the clear position if all the stop signals are
"off". Thus, if the "distant" signal is "off", a dnver can justifiably assume
that he has a clear road through the particular station m junction; and beyond
the need for confirming that the other signals are clear he is "right away"
until the time comes for sightmg the next "distant". Thus, so far as the
maintenance of high speed is concerned ; the "distant" is the important signal.
With multiple-aspect signalling, as installed on certain sections of the
Southern Railway in the London suburban area, and on the main line of the
L.N.E.R. between York and & Darlington, every running signal is of equal
importance; a driver may be required to bring his train to a dead stand at
any one of them, and any one of them may, in turn, give the caution indication
requiring a reduction from his full runnmg speed. Also whereas under manual
block working the signal boxes are rarely less than a mile apart, and are
mostly spaced considerably further, with multi-aspect signalling the signals
are much closer together; on some sections they are less than half a mile
apart, a condition that necessitates continuous observation of signals by
the driver. How far multi-aspect signalling is likely to be extended in the
country is a topic outside the scope of the present series of articles; it
is enough to emphasise that the problem of applying A.T.C. or cab signalling
on multi-aspect sections is quite different from that in manual block territory.
So far the only sections of any extent in this country equipped with A.T.C.
apparatus are worked on the manual block system, and in presentmg a survey
of the position as now existing one might, on these grounds, be justified
in confining attention solely to these installations. Furthermore, the
installation of multiple-aspect day colour-light signals has come to be regarded,
in some quarters, as an alternative to automatic train control on the dual
grounds that the signals in. themselves are better visible than semaphores
m thick weather, and that their closer spacing calls for increased vigilance
on the driver's part. This is, however, a controversial point, to which the
misreading of the signals in the recent accident at Ilford has not added
any weight. The argument is, however, one of first class importance just
now, and, accord- ingly, some space will be devoted in the latter part of
this series of articles to the system of continuous-indication cab signalling,
which has been developed to operate in conjunction with multiple-aspect wayside
signals.
Among A.T.C. systems actually in service in this country, that used on the
Great Western Rai1wway is based wholly upon the indication displayed by the
distant signal. It supplements the visual signala semaphore arm by
day or a coloured light after darkby .an audible signal in the locomotive
cab. If the distant signal is clear a bell is rung; if the distant. signal
is displaying the "caution" indication a siren is sounded in the cab and
the brakes are applied. The audible signals correspoding to clear and caution
are entirely different, so as to avoid any possible chance of their being
mistaken, and the engmemen have grown to place such confidence in the apparatus
as to run at full express speed in foggy condifions when visibility is
practically nil. At the same time it is only a safeguard agamst dnvers' errors;
the signals are operated on the manual block system, and the A.T.C. apparatus
merely supplements the indications they display. The brake application on
passing a distant signal at caution is an important feature; it is made
automatically, and is such as to bring the train to a stand before the stop
signal is reached. But were such. a brake application to be made every time
a distant signal was displaying "caution" was passed, very serious inconvenience
in operatmg would be caused. In m.any cases, particularly in the working
of slow freight trains, these caution indications do not eventually prove
to be preludes to a dead stand. More often than not a driver, by suitably
reducing speed and crawling from one stop signal to the next, can avoid a
stop altogether; yet such would be cornpelled if the A.T.C. apparatus was
allowed to function irrevocably.
We thus come to a point that has been the subject of much controversy in
the past. If, through the provision of some additional device, the driver
who is properly on the alert can cancel the automatic brake application,.
and retain control of the train himself, it would seem that an important
safeguard has :been lost for the sake of greater operating convenience. It
is true that on passing an adverse distant signal he will have received the
audible warning, and his vigilance is proved bv his pressing of the cancelling
button; beyond that, however, there is nothing to prevent a careless or inexperi-
enced man from continuing at speed, or so mis- judging his brake application
as to overrun the stop signal and endanger the safety of his train. Such
action may well seem so unlikely as to be neglected in a consideration of
basic operating principles affecting the use of a system of A.T.C. There
is, however, unhappily a certain footplate mentality that is given to the
taking of extraordinary risks. A case occurred in America on the New York
Central System, on a line equipped with an intermittent type of A.T.C., in
which the driver of an important express passenger train received a caution
indication, took the necessary action to reta:in control of the brakes himself,
and yet con- tinued af a speed of over 70 m.p.h. until, indeed, he sighted
an obstruction ahead; it was then too late to pull up safely, and a disastrous
collision occurred.
While no such parallel exists on British lines equipped with A.T.C., there
are instances, under extenuating conditions, in which drivers have failed
properly to observe the wayside signals, and yet have continued at speeds
that under the particular circumstances can only be described as reckless.
The historic accident in 1913 near Aisgill summit on the Midland Railway
was caused in this manner, through a driver, while trying to remedy steaming
and injector troubles on his engine, misreading the distant signal and failing
to observe anyone of the stop signals at an intermediate box; in full knowledge
of this he continued at running speed, with so little attention to the look-out
ahead as not to see an obstruction until he was within 20 yards of it. The
collision at Ilford on January 16, 1944, was a repetition of the same curious
kind of negligence; for here a driver, running in darkness and dense fog,
and apparently not losing his sense of location, passed five successive signals
at danger. The first two were long-range colour lights, and both were misread;
of the three succeeding signals, all semaphores, this driver saw not a sign,
and yet continued running at a fair speed. Such instances, though disturbing,
are, happily, very rare, as indeed are the occasions in this country where
misread or overrun signals have been the cause of accidents.
When means exist by which a repetition of even these few accidents, and their
attendant loss of life, can be avoidedit is clearly desirable that financial
considerations should not be allowed to loom too large. But, quite apart
from the increased safety in working, A.T.C. apparatus has proved a direct
aid towards the more economic operation of traffic. The author recalls a
journey by an im- portant business express service on an evening when thick
ground mist was lying at many locations along the 200-odd miles of route.
The schedule, though very fast, was well within the capacity of the locomotive,
but the crew were evidently finding great difficulty in sighting the signals.
On the clear stretches speed was worked up to well above normal for the
particular train, but elsewhere many times there came severe reductions of
speed until the driver had sighted the next distant signal. It was noticeable,
however, that the moment the distant had been properly observed the train
was very rapidly accelerated, even in the fog, and speeds of over 70 m.p.h.
attained before the next slackening to sight signals. Actually the road itself
proved dear throughout, and by this alternation of spurts and slowings the
driver succeeded in maintaining an overall average speed of 57! m.p.h. But,
never- theless, nearly 18 minutes had been lost on schedule time, and the
strain of driving in such circumstances needs no emphasis.
By contrast, instances have been recorded on the Great Western Railway wherein
the fastest booked trains have been run practically at normal speeds on days
when dense fog Ihas prevailed in the Thames Valley. The Cheltenham
Flyer, in particular, scheduled in pre-war days to average 80 m.p.h.
for some 65 miles on end, has been run punctually to time in very bad conditions
of visibility,. while such a feat makes it clear that other traffic was running
equally well, otherwise so fast a train would not have had a clear road.
This warning system based on the distant signal has proved its worth in a
variety of ways, and its installation over the entire main-line network of
the Great Western Railway represents a valuable additional safeguard in train
operation over an extensive area of the country as a whole. In the next article
of this series the apparatus will be described in detail. Illustration: GWR
West of England express at Westbury South passing A.T.C. location, on up
road, where ramp is ahead of the signal. (Photo: G. H. Soole).
Part 2 page 160
West Highland RailwayJubilee. 142
Fifty years ago (7 August 1894) this line was brought into use for
public traffic between Craigendoran and Fort William and four days later
the official opening by the Marchioness of Tweeddale took place. The engineers
for the line were Formans & McCall. of Glasgow. and their task was not
made easier since the line had to be constructed with economy through most
difficult country. and in districts where roads had never existed and even
footpaths were scarce. Rivers and mountain torrents were spanned. and the
track laid alongside lochs. in some instances hundreds of feet above sea
level. No less than 400 bridges of different types were required. One of
the greatest problems confronting the engineers was the crossing of the wide.
boggy expanse of Rannoch Moor. The bed of the railway was cross-drained.
a thick layer of tree roots and brushwood laid down. on top of which were
thrown excavations from other parts of the line until the whole was solid
enough to allow the permanent way to be laid. Even then a viaduct 684 feet
in length. with nine clear spans of 70 ft. 6 in. had to be constructed to
carry the line over a depression on the moor. The summit of the line is reached
at Corrour, 1.347 ft. above sea level. Sharp curves abound throughout the
route. which is single except at passing places. and the gradients are steep.
In 1895 a branch from just outside Fort William to Banavie Pier was opened.
and in the following year the construction of the extension from Banavie
to Mallaig, including a harbour at the latter place. was authorised by
Parliament. Work commenced on 21 January 1897. and the line was opened in
April, 1901.
James McEwan. Locomotives of the Caledonian Railway. 142-6. 6 illustrations, 2 tables
Number | Maker | Date | WN | Renumbered | Withdrawn |
1 | Dubs | 1869 | 303 |
61 in 1881; 59 in 1885; S. No. 22A in 1896 | 1896 |
2 | Dubs | 1869 | 304 |
2A in 1893; 1201 in 1899; 1002 in 1900 | 1904 |
3 | Dubs | 1869 | 305 |
3A in 1893 | 1898 |
4 | Dubs | 1869 | 306 |
4A in 1893 | 1898 |
5 | Dubs | 1869 | 307 |
5A in 1893 | 1894 |
6 | Dubs | 1869 | 308 |
6A in 1893 | 1896 |
7 | Neilson | 1870 | 1515 | 7A in 1893; 105 in 1895; 1213 in 1899; 1105 in 1900 | 1900 |
8 | Neilson | 1870 | 1516 | 8A in 1893; 1202 in 1899; 54 in 1900 | 1905 |
9 | Neilson | 1870 | 1517 | 9A in 1893; 1203 in 1899; 55 in 1900; | 1906 |
10 | Neilson | 1870 | 1518 | 10A in 1893; 1204 in 1899; 58 in 1900;1010 in 1902 | 1905 |
11 | Neilson | 1870 | 1519 | 11A in 1893; S. No. 1205 | 1899 |
12 | Neilson | 1870 | 1553 | 12A in 1893 | 1896 |
13 | Neilson | 1870 | 1554 | 13A in 1895; 203 in 1898; 1220 in 1899; 1013 in 1900 | 1901 |
14 | Neilson | 1870 | 1555 | 14A in 1894 | 1896 |
15 | Neilson | 1870 | 1556 | 15A in 1894; 1206 in 1900; 162 in 1900 | 1903 |
16 | Neilson | 1870 | 1557 | 16A in 1894 | 1896 |
17 | Dubs | 1870 | 390 |
17A in 1894 | 1898 |
18 | Dubs | 1870 | 391 |
18A in 1894; S. No. 1207 | 1899 |
19 | Dubs | 1870 | 392 |
19A in 1895 (not carried) | 1895 |
20 | Dubs | 1870 | 393 |
20A in 1895; 1208 in 1899; 1020 in 1900 | 1901 |
21 | Dubs | 1870 | 394 |
21A in 1895; 1209 in 1899; 166 in 1900 | 1907 |
22 | Dubs | 1870 | 395 |
22A in 1895 | 1896 |
23 | Dubs | 1870 | 386 |
23A in 1895; 96 in 1896; 96A in 1897 | 1898 |
24 | Dubs | 1870 | 397 |
24A in 1895; 59 in 1896; 1204 in 1902 | 1906 |
25 | Neilson | 1871 | 1605 | 25A in 1895; 1210 in 1899; 1025 in 1902 | 1908 |
26 | Neilson | 1871 | 1606 | 26A in 1895; 1211 in 1899; 1026 in 1902 | 1913 |
27 | Neilson | 1871 | 1607 | 27A in 1895 | 1898 |
28 | Neilson | 1871 | 1608 | 28A in 1895; 106 in 1896; 1214 in 1899; 1028 in 1902 | 1903 |
29 | Neilson | 1871 | 1609 | 29A in 1895; 1212 in 1899; 1029 in 1902 | 1910 |
It will be observed that some of the renumbering was caused by boiler
exchanges.
In the five years following the amalgamation several small tank engines were
obtained. Six were of the 0-4-0 wheel arrangement and two of the 0-6-0 wheel
arrangement. Five of the four-wheeled tanks were made by A. Barday &
Co., of Kilmarnock, and the sixth one by Neilson & Co. All were saddle
tanks with outside cylinders and 3 ft. 6 in. coupled wheels. The cylinders
of the Neilson engine were 12 in. diameter by 18 in. stroke. The heating
surface was made up by: Tubes, 485 ft2.; firebox,
40 ft2.; making a total of 525
ft2. The grate area was 7.5
ft2. and the working pressure 140 lb. The weight
in working order was 20.9 tons. Tank capacity, 500 gallons. Wheelbase, 5
ft. 6 in. The Barclay engines had 12 in. diameter by 20 in. stroke cylinders.
Wheelbase of 5 ft. 6 in., and the tanks varied from 500 to 600 gallons capacity.
No. 134 (then 523) was rebuilt n 1878 with a new tank carrying 800 gallans
of water. Two of the Barclay engines came from John MacKay, the contractor
far the Callander & Oban Railway, in 1869, through the bankruptcy of
the owner. There is said to have been a third engine taken over and that
this was six-coupled, but was sold to a colliery without being taken into
C.R. stack. It is passible that this was the engine made by Cross, of St.
Helens, used in the construction of the Wigtownshire Railway and
sold to MacKay (see Locomotive Mag., 1943,
49, page 27).
Number | Maker | Date | WN | Date acquired | Renumbering | Withdrawn |
123 | Neilson | 1867 | 1247 | 1867 | 151 in 1872; 521 in 1877 | 1884 |
134 | Barclay | 1870 | 91 |
1870 | 523 in 1877; 527 in 1884; 527A in 1888 | 1896 |
16 | Barclay | 1868 | 81 |
1869 | 135 in 1870; 524 in 1877 | 1884 |
16 | Barclay | 1868 | 81 |
1869 | 136 in 1870; 525 in 1877; 369 in 1884; 369A in 1887 | 1888 |
137 | Barclay | 1871 | 109 |
1871 | 526 in 1877 | 1883 |
138 | Barclay | 1870 | 103 |
1871 | 527 in 1877 | 1882 |
The two six-coupled tanks had outside cylinders 15 in. diameter by
20 in. stroke, 3 ft. 8 in. coupled wheels, and a wheelbase of 9 ft. 2 in.
divided 4 ft. 8 in. plus 4 ft. 6 in. Tank capacity, 800 gallons. Working
pressure, 130 psi. These were manufactured by Neilsan & Co. in 1870 (maker's
numbers 1559 and 1560) and were C.R. Nos. 139 and 140 until 1877, when they
were renumbered 510 and 511. In 1890 they became 510A and 511A. The first
one (originally No. 139) received S. No. 1362 and was withdrawn in 1899.
The second one (originally No. 140) was renumbered 1363 in 1899 and 1511
in 1900. It was withdrawn in 1901.
In September, 1869, the Caledonian Railway took aver the working of the Solway
Junctian Railway, although it was not until 1870 that the line was opened
for passenger traffic. Owing to the light construction of the now defunct
Solway Firth Viaduct, the load per axle had to be limited and consequently
only lighter types of engines were permitted to use the section from Annan
to the English shore.
None of the Solway Junction Railway engines carried their numbers. In the
SJR. list, although for a short tune they were referred to by them in the
books. It had been arranged that the C.R. were to work the line from the
opening and all the engines were delivered to the C.R. Co. When the Solway
Junction Railway ordered their first engines, Neilson & Co. had in stock
four locomotives which suited their requirements very well. These four engines
had been built in 1866 for the Northampton & Banbury Railway Co., but
had been left an the builders' hands due to financial difficulties arising
with the N. & B. Railway. These four engines were delivered to the
C.R. in 1868 along with the two new 0-6-0 engines ordered far the mineral
trains. The two engines which were to have taken S.J. Nos. 1 and 2 were 0-4-2
type well tanks with weatherboards only, but owing to the exposed nature
of the line they received canopies over the footplate shortly after going
into service. The cylinders were inside and were 16 in. diameter by 20 in.
stroke. The coupled wheels were 5 ft. 6 in. diameter and the trailing wheels
4 ft. 0 in. diameter. The wheelbase was 17 ft. 0 in. spaced 7 ft. 6 in. plus
9 ft. 6 in. The length over the buffers was 30 ft. 1 in. The capacity of
the well tank was 450 gallons,. while the capacity of the coal bunker was
25 cwt. The heating surface was: Tubes, 924.5
ft2; firebox, 84.7
ft2; total, 1,009.2
ft2. Grate area, 13.75
ft2. Working pressure, 130 psi. Weights per axle
in working order: Leading coupled, 10 tons 17 cwt. 1 qr.; driving axle, 12
tons 5 cwt. 3 qrs.; trailing, 12 tans 19 cwt. 2 qrs.making a total of 36
tons 2 cwt. 2 qrs. The C.R.. Nos. were 540 and 541 (makers' numbers 1217
and 1218 of 1866). Both engines were put on to the duplicate list as 540A
and 541A in 1892. In 1899 they be- came 1354 and 1355 respectively. No. 540
was withdrawn in 1900, while the remaining engine became 1541 in 1901. It
was, however, withdrawn in the same year.
S.J.R. Nos. 3 and 4 were 0-4-2 type tender engines with cylinders, motion,
wheels and boilers interchangeable with the well tanks Nos. 1 and 2. The
tenders ran on four wheels and had a wheelbase of 8 ft. l0in. Their capacities
were 1,700 gallons of water and 2½ tons of coal. The length of the engine
and tender over the buffers was 42 ft. 1 ½in., and total wheelbase 30
ft. 8 in. The engine wheelbase was 14 ft. 6 in., divided 7 ft. 6 in. plus
7 ft. 0 in. The weights per axle in working order were: leading coupled,
10 tons 19 cwt.; driving, 12 tons 1 cwt. 2 qrs. ; trailing, 5 tons 12 cwt.
2 qrs.; total, 28 tons 13 cwt. The tender weighed 10 tons 1 cwt. 2 qrs. on
the leading axle and 9 tons 19 cwt. 2 qrs. on the rear making a total of
20 tons 1 cwt. The C.R. Nos. when received were 452 and 453 (makers' numbers
1219 and 1220 of 1866), and in 1877 they were renumbered 322 and 323. In
1887 they became 322A and 323A. The first one received S. 1 o. 1279 when
withdrawn in 1899. The second one became 1280 in 1899 and 1323 in 1900, being
withdrawn in 1906.
S.J. Nos. 5 and 6 were 0-6-0 type tender engines ordered in 1868 by mutual
agreement with the C.R. Co. They never bore S.J. Nos., being given C.R. Nos.
542 and 543 when built by Neilson & Co. The cylinders were inside and
were 17 :in. diameter by 24 in. stroke. The driving wheels were 5 ft. 1 i
in. diameter and the engine wheel- base 7 ft. 3 in. plus 7 ft. 9 in., total
15 ft. 0 in. The axles were of Yorkshire iron and tbe tyres of Krupps' cast
steel. Only one injector was provided. The heating surface was: 176 brass
tubes 2 in. diameter, 957.05 ft2; firebox, 86.95
ft2; total, 1,044 sq. ft. Grate area, 16.58 sq.
ft. Work- ing pressure, 130 lb. sq. in. The boiler barrel was 4 ft. 1 in.
diameter outside at the front (and smallest) ring. The distance between
tubeplates on six wheels 3 ft. 9 in. diameter spaced 5 ft. 8i in. centres,
making a total tender wheelbase of 11 ft. 5ir in. The total wheelbase of
engine and tender w"as 34 ft. lOt in. Length of engine and tender was 10
ft. 4ft in. The coupling rod was nutted and split-pinned. The weight per
axle was: Lead- ing, 11 tons 11 cwt.; driving, 12 tons 10 cwt. ; rear, 9
tons 19 cwt. ; total, 34 tons. The tender ran over buffers, 47 ft. 0 in.
The tender carried four tons of coal and 1,800 gallons of water. The tender
in working order weighed 25 tons 19 cwt. 2 qrs., made up as follows: leading
axle, 8 tons 15 cwt. 2 qrs.; middle axle, 8 tons 11 cwt.; rear axle, 8 tons
13 cwt. The axles were of Yorkshire iron and the tyres of cast steel. The
weight of the engme and tender empty was 30 tons 17 cwt. and 13 tons 17 cwt.
2 qrs. respectively. The C.R. road numbers were 542 and 543 (Neilson &
Co. 1388 and 1389 of 1868) which they carried until 1892, when they became
542A and 543A.
Illustrations: C.R. 0-6-0 S.T. No. 139; Solway Junction Railway 0-4-2 W_T. No. 1 (C.R. No. 540) as built (Photo: N.B. Loco. Co.); C.R. 0-4-2 W.T. 540A (exS.J. Ry.) as finally running (Photo: F. Moore); ,Solway Jet. 0-4-2 (C_R. Nos. 452 and 453) as built Image (Photo: N.B. Loco. Co.) C.R. 0-4-2 1323 (orig. S .. J. Ry, No. 4) as finally running (Photo: F. lVIoore)
Correspondence. 146
British locomotive builders, H.F.
Hilton
Re the name of Goldsworthy Gurney, noted as the builder of steam road
carriages, should be added to the list of locomotive builders. In 1830 one
of his steam road engines was taken by road, pulled by horses, to a place
near Aberdare, S. Wales, at the request of Mr. Crawshay, provided with cast
.lron wheels and put to work on the Hirwain Railway hauling coal and iron.
It is stated that the engine worked there throughout 1831, successfully
performing everything it was expected to do.
Re firm of Murdock & Aitken mentioned
in Locomotive Mag, 1927, 33,
page 163. This firm's works were situated in Hill Street, Glasgow, and
in 1831 built two engines for the Monkland & Kirkintillock Railway. The
first engine was put to work on 10 May and the second on 10 September, the
former being the first locomotive to be constructed .in Glasgow. I hope to
be able to send you some further particulars and a drawing of these
engines.
Reviews. 146
Diesel electric shunting locomotives. V.
Finegan. George Newnes Ltd.
Intended for all interested in the practical side of diesel electric
shunting locomotives. The author, in Chapter II, gives various reasons why
he considers diesel locomotives are superior to steam; now if the case of
steam versus diesel is going to be discussed it should be done in an unbiassed
way and the merits of each prime mover should be adequately presented. Although
the author does not even suggest it, there are conditions, even in main line
yards, where steam has advantages over diesel. While the title of the book
leads one to expect a work dealing with the sundry types of shunting locomotives,
the author confines himself almost entirely to those employed in large
marshalling yards. In many industrial yards the so-called fireman of the
steam locomotive is equally a shunter and cannot be dispensed with; if a
second man must be retained, diesel traction may never pay as well as steam.
The book is notable for some sweeping assertions which are inaccurate. On
page five it is stated that practically all road transport vehicles are powered
by diesel engines; it would be nearer the truth if this statement had been
qualified by the word "heavy". On page 73 the following appears: "it may
be noted that whereas only a small number of bearing surfaces are required
for changing electrical into mechanical energy, a much larger number are
required for the other type of conversion, from heat into mechanical energy."
The form of energy converted does not influence the matter. The comparison
is made between different types of machine, viz.., reciprocating and continuously
rotating; if similar types are compared the results are very different, a
turbine has no more bearings than an electric motor. On page 190 we read
that in the U.S.A. "the diesel electric system has invaded main line services
in addition to completely eliminating the steam locomotive in shunting work."
As the U.S.A. possessed 7115 steam switching locomotives in 1941, no one
will be prepared to believe that these have been completely eliminated in
the short space of three years, especially. as some of these were of modem
design and construction.
There is unnecessary repetition, the sequence in which items are descnbed
is capable of improvement, e.g., a detailed descnption of the cooling system
is followed ten pages later by an explanation of why the cooling system is
necessary.
In some cases the diagrams, text and index are, in the opinion of the reviewer,
misleading, and one is forced tu the conclusion that the best has not been
made of the opportunity to place a useful booklet in the hands of those
concerned.
Coming of age of Railway Grouping. The Railway Gazette.
Unable, due to paper restrictions, to publish a supplement of the
comprehensive character associated with the productions of our contemporary
m peace time, a reprint had instead been issued m booklet form of articles
appearing in The Railway Gazette in connection with the "coming-of-age"
of the Main Line Railway Companies of Great Britain.
The grouping of the railways is described as the one big thing. done when
peace came after WW1, and the effectiveness of the scheme has since been
amply proved under conditions of both peace and war. The Select Committee's
findings are referred to together with the circumstances prevailing pnor
to, at grouping and afterwards. The subject has been handled almost entirely
from an economic aspect, which is logical in view of the fact that the raison
d' etre of grouping was economic. A great deal has been accomplished since
1 January 1923, and the major events are duly chronicled. Maps of the four
groups and their constituent lines are includedunfortunately and no
doubt of necessityon a small scale. Photographs of the Chairmen and
General Managers are given, and the booklet concludes with a report of the
luncheon held at the Dorchester Hotel to celebrate the occasion.
A plan for post-war transport. Modern Publishing Co., Ltd.
This book comprises a revised reprint of a series of articles which
appeared in Modem Transport, and many will find it convenient to be
able to obtain these schemes in booklet form.
The subject is undoubtedly a complex one; the plans put forward in each branch
of inland transportincluding, of course, air and water transportare
sound rather than spectacular, providing for evolution rather than revolution.
None of the elements suggested is wholly untried, so that the plans should
have far greater prospects of success than any superficially attractive schemes
which would probably be unable to fulfil their promise. It has been written,
by men who are experts in transport manipulation; from an entirely independent
standpoint.
Wireless on freight trains. 146
A loaded freight train of sixty-eight wagons equipped with two-way
radio-telephone communication had completed a satisfactory series of tests.
over a stretch of 2,200 miles on the Atchison, Topeka & Santa. Fe
Railway.
Number 626 (14 October 1944)
The rehabilitation of motive power. 147.
Editorial: though the prolonging of the war is complicating many political
and economic issues, there seems a: good prima facie case for sup- posing
that what seems its inevitable extension will simplify at least one major
transport problem in this country. That is the nature of the rehabilita-
tion of the four group railways in motive power and rolling stock, handled
by the chief mechanical engineers', running and operating departments. If
post-war plans had to be put into effect within the next few months it is
not unreasonable to suppose that some measure of chaos or pandemonium would
result; not chaos in execution,' for the departments listed are, in this
country, fully capable of carrying out orders. No: the chaos would be that
of policy, the initiation of which is above those departments. Is there as
yet any settled idea as to a policy which will provide smooth and continuous
transition from established practice to the ever- present trend of progress
in technics and economics? Despite the interest of the group railways in
aviation, it may be doubted. But the longer the war lasts the dearer will
become certain aspects of economics, or rather the economic aspects of certain
political forces; and the dearer will become the practicabilities of several
technical improve- ments of the war years. New potentialities in the technical
field, though they should come after policy and give effect to it, may in
this case help vacillating policy over difficult stiles. Already the four
group companies seem to have made plans to offer air travel for certain
long-distance, high-speed passenger traffic. This does not mean- all traffic
of that type will be air-borne; . but it does mean a' clearer pre-view should
be obtained as to how rail-borne traffic of that kind is to be handled. The
question is of considerable importance to locomotive engineers. For example,
will such traffic be hauled at 1939 speeds in 15/ 18~ coach train formations
by extrapolations of 1939 Pacifies? Or will it be handled at increased speeds
by smaller locomotives pulling lighter trains, or by railcar-trains, running
much more frequently? There is no doubt as to which method of travel would
best please the public. There is no technical bar'to increased frequency
of train service up to L.P.T.B. standards. Nor can there be any doubt that
mechanical engineers can produce highly effi- cient motive power of any type.
But it would be fair to give those engineers in ample-time an indication
as to which of the two or three principles enumerated is to be pursued, because
the development of any of those policies has innumerable: ramifications in
all phases of railway work, and will necessitate much co-ordination and
preparation m each department, as well as inter-departmentally. For instance,
if the policy of running frequent high-speed light-weight trains was adopted,
the total traffic on many hnes could be handled only If all traffic was speeded
up appreciably. That in itself is an admirable corollary; but it would
necessitate British wagon stock being equipped with continuous brakes, a
further admirable corollary, though one which would add much to the
responsibilities of the mechanical engmeenng and running departments.
Such major issues of railway policy as those grven above, and those of what
is to be done with branch lines and suburban traffic, have a vital effect
on the functions and composition of the engineering and operating departments
which needs long and careful consideration. If existing lines of the lightcountry
branch type are not to be eliminated, the proper use of the rail-car seems
the only way to serve them and to cater for their passenger and freight traffic.
Admission always has been made that railways are particularly suited to heavy
traffics, not only in freight, 'but also in suburban transit. Yet in reviewing
the question of electrifi- cation or dieselisation, or of special steam
locomotives for suburban routes, it should not be overlooked that in several
cities abroad applications have been made already for helicopter licences.
for machines to deal with outer suburban and short-distance inter-urban passenger
traffic. Such proposals are by no means so far-fetched as they might at first
appear. Technically there is probably little difficulty. And as to the
possibility of helicopters dealing with the traffic offering, one must not
forget that quite likely social and economic habits may change so much in
a few years that there will not be the inordinate morning and evening rush-
hour traffic peaks of to-day. In such a case, nothing like full economic
benefit would be obtained from millions of pounds spent on electrification.
But from the point of view considered here the most profound effect will
be on the responsibilities of the railway technical departments, and on the
qualifications of the men composing them; because whatever the means of transit
or type of motive power adopted, the nucleus of. the organisation will have
to anse from the.existing personnel and departments.
Southern Railway. 147
Additional Merchant Navy class locomotives under construction at
Eastleigh.
Mallet locomotives for the Baltimore and Ohio Railroad. 148. illustration
Baldwin Locomotive Co. 2-8-8-4 with 24 x 32in cylinders,
5298ft2 evapourative heating surface, 2118ft2 superheat
and 117.6ft2 grate area.
Diesel electric locomotive LNER. 148-9. illustration
Built at Doncaster with 350hp diesel electric equipment supplied by
English Electric; similar to that supplied to LMS. Capable of working as
mobile power stations: four on order. No. 8000 illustrated.
Nose-suspended v. fixed motors. 150-3. 5 diagrams
Costs, ease of maintenance and track damage are considered for
nose-suspendended, jackshaft and cardan shaft drives. Some attention is paid
to resilient wheels with rubber inserts.
P.C. Dewhurst. Midland Railway locomotives. Birmingham
& Derby Junction Railway. 153-5. 2 diagrams (side elevations)
Continued from page 130. During
the years leading up to. 1841 the boiler-barrels of six-wheeled locomotives
of all makers had been 8 ft. long far passenger engines and 8 ft. 6 in. long
for goodsin the 1837-41.period this was practically a "regulation"
it bemg remarkable to note that this was the same as Bury's four-wheeled
engines, in fact there was some tendency far Bury's engines to have 8 ft.
3 in. and 8 ft. 6 in. barrels i.e., frequently longer than the s:x-
wheelers! As most of the boilers had 15/8 in. to. 2 in. tubes
it is evident that much heat must have been lost up the chimney, and this
circumstance caused the oft-related but authentic, tests carried out on the
North Midland at R. Stephenson's instance to ascertain the heat in smokeboxes
and which led to the "long-boiler" pattern of Stephenson's Patent of June,
1841, with boiler-barrels about 13 ft. long. The 1ength of Sharp's bailer-barrels
seems to have jumped straight from 8 ft. to 10 ft.-only dubious traces
of one intermediate size being known to the authorand the early 10
ft. barrels accompanied fireboxes of similar sizesviz., 36 in. long
by 42 in. wide inside; but somewhat higherto those used latterly with
the 8 ft. barrels. As above noted, the "long-boiler" principle developed
directly from the short barrels of 8 ft. 0 in. (and 8 ft. 6 in.) to. 13 ft.,
and whereas Stephenson's and associated firms used the long-boiler pattern
for both passenger and goods engines, Sharp's adopted it only for their
particular "Sharp" design of six-coupled goods, and apparently went straight
to. a moderate barrel length without suffering the unfortunate "long-boiler"
passenger engine phase of most of their competitors.
The "early" Sharps had boiler-pressures of 50-55 lb., whilst the later ones
of 1847-9 had 80 lb. The total heating surface of the "early" group varied
from 480 to 600 ft2., with a grate area of 8 to.
10½ ft2 respectively and a weight in working
order of 13½ to 15 tons; the "Little" Sharps from 750 to. 830
ft2 with 10.6 ft2 grate
area and weight af 18 to. 18½ tons, and the "Big" Sharps of 1848-9 some
920 ft2., a. 12.6
ft2. grate and weighed 21½ tons in working
order. The first singles with 20 in. stroke were two for the Ulster Railway
in 1842, whilst the first for the standard gauge were for the Sheffield &
Manchester in 1844 with 14 by 20 in. cylinders; but the first of the extensive
brood of well-known
Fig. 4. B. & D.J.R. "Sharp's Singles"
Cylinders 12in. x 18in
Wheels (diameter): Leading and trailing 3ft. 6in.
Driving 5ft. 6in.
Wheelbase, total engine 11 ft.0in.
Boiler: Length of barrel 8ft. 0in.
Mean diameter 3ft 4in
Inside firebox: Length 2ft. 8in
Width 3ft. 6in.
Tubes: Number 132
Outside diameter 15/8in.
Heating surface: Tubes 476 ft2
Firebox 43.5 ft2
Total 519.5 ft2
Grate area 9.3 ft2
Boiler pressure about 55 psi
Weights in working order about: | t | c | q |
On leading wheels | 4 |
13 |
0 |
Driving wheels | 6 |
0 |
0 |
Trailing wheels | 3 |
18 | 0 |
Total engine | 14 | 11 | 0 |
Divided wheelbase: Leading to driving 6ft. 0in.
Drivmg to trailing 5ft. 0in..
Rated tractive force (at 75 per cent.) 1620 lb.
"Sharpies" having 15 by 20 in. cylinders commenced with Sharp's No. 285 for
the Brighton, Croydon & Dover line early in 1845. . To sum up, it may
be said that the "early" Sharps were a goad average design for the period,
but not outstandingly superior to contemporary engines by some of the other
makers; and whereas it was mostly the former which became so popular on
Continental railways, it was the true "Sharpies" of the years 1845 onward
which became so widespread in England, where its excellence of detail design
secured a reputation which has been handed don amongst railwaymen.
The three B. & Derby singles were Maker's Nos. 51, 52 and 55, delivered
September-October, 1839, and their names were Dewent, Trent
and Dove. They were of the smaller of the two sizes of singles
subsequent to the original design for the Grand Junction made
by Sharps during the 1838-40 period; having 32 in. length of firebox and
consequently their framing corresponded to style "2" and their other
constructional , features all pertaining to those given above as "early"
Sharps it being probable they had the opposed-gab gear with rocking
shafts they being exactly similar to eight engines built for the London
& Southampton in 1838, ten for the Grand Junction in 1838-9, and three
for Baden & Belgium in 1840, and hence at a disadvantage in size of firebox
with the engines supplied by the firm to the London & Brighton, London
& Croydon and to some of the French and German lines in those years.
.
There is fortunately extant, in a German publication of 1842, a drawing of
the two sister engines built for Baden, and Fig. 4, representing the engines
of the B. & D., is derived from this drawing with the addition of a few
constructional details from other contemporary Sharp drawings and the elimination
of the spark-arresting chimney-cap which is not likely to have been present
on those for England. The Ieading dimensions are appended to the figure.
No special mention of these Sharp engines occurs in material now available
beyond a complaint dur- ing June, 1840, from the London & Birmingham
Railway that "the Dove is out of gauge with our line of rails and has broken
several chairs and torn a piece from the points and crossings at Hampton"
, the Board of the L. & B. at the same time notifying the B. & D.
that the Dove would not be allowed to pass on their line until the
gauge of the wheels conformed to the L. & B. rails. The after-career
of the engines upon the Mid. Rly. has already been dealt with; it may be
mentioned, however, that C.E. Stretton was informed
by an old MIdland dnver that in 1846 M.R. engines 121 and 122 were two of
these 1839 Sharp engines but this is considered very doubtful. '
An analysis of the Hawthorn singles of the maker's "Standard" pattern up
to early 1840 may be worth while,. as in the case of the Sharp locomotives.
It is similarly clear in this case that the length of boiler barrel did not
vary from 8 ft. 0 in., nor. did the width of the firebox41¼
in.change until the beginning of 1840, except in some special cases
where a definitely larger engme was in question. The earliest of these
enginesHawthorn's 244-7 of 1838 to the Paris & Versailles Railway,
as also some for the Newcastle & North Shields Railwayshad 39 in.
diameter boilers and 30 in. length of firebox, whilst the engines built in
1838-39 for the Grand Junction, Birmingham & Derby and Great North of
England railwaysfive, three and eight in. number respectivelyhad
the same barrel, but with a firebox 32 in. long; subsequently 42 in. and
43 in. boiler-barrels were used with fireoxes 405/8. in. and
41 in. in length by 44 in. in width, whilst in one case, engines for the
Paris-Orleans, the 42 in. barrel was used with the 32 in by 41¼ in.
firebox, but these three last cases were obviously outside the maker's general
practice.
Takmg the two first groups as A and B the only really contemporary drawing
that the author was aware of is that (or rather two of them, identical)
representing Hawthorn's 244 and 245 of 1838 to the Paris-Versailles line
of group A, having a firebox length of 30 in., and to. illustrate the B.
& Derby engines allowance has been made for their 2 in. greater length
of firebox, together with some increase in its depth; also the D. & T.
wheelbase has been altered to suit the longer firebox, because it would have
been impossible to get the increased length into the same wheelbase without
altering the relative position of the boiler to all the rest of the engine,
which is unlikely to have been done. As Hawthorn's practice subsequently
showed a partiality for what may be called the G.W.R. style of "cut-out"
framing, it is to be supposed that all Hawthorn-designed engines of 1838-40
followed the style of the Paris-Versailles locomotives; hence Fig. 5 can
be reasonably considered as representing the Birmingham & Derbyand
other enginesof group B. No illustration is known of the larger, 42
in. and 43 in. barrel examples.
The B. & D. singles were named Anker, Tame and
Blythe, being delivered about the end of 1839, the maker's numbers
being 262-4, their leading dimensions are appended to the figure, and their
principal constructional features were as follows: Fig. 5. B. & D.R.
"Hawthorn's Singles"
Cylinders , 12 in. x 18 in ,
Wheels (diameter): leading and trailing 3ft. 6in.
Driving 5ft. 6in.
Wheelbase, total engine 10ft. 1½in.
Boiler: Length of barrel 8ft. 0in.
Mean diameter 3ft. 3in
Inside .firebox: Length 2ft , 8in:
Tubes: number 121
Outside diameter 15/8in.
Heating surface: Tubes 427 ft2.
FIrebox 51 ft2..
Grate area 9.2 ft2
Boiler pressure about 50 psi
Weights in working order about: | t | c | q |
On leading wheels | 4 |
0 |
0 |
Driving wheels | 6 |
0 |
0 |
Trailing wheels | 3 |
10 | 0 |
Total engine | 13 | 10 | 0 |
Divided wheelbase: leadmg to driving 5ft. 1 in.
Drivmg. to trailing , 5ft. 0½in.
Rated tactive force (at 75 per cent.) 1473 Ib:
Whilst the outside main frames were of the usual "sandwich" pattern" the
axle-guards were in one piece with the flitch-plates of the upper portion
and of the cut-out pattern so long associated with the G.W. Railway, the
driving springs being above, but both the leading and the trailing springs
were between the sandwich and the axleboxes. The in- side frames, of which
there were three, were of the usual forged slab pattern, all three being
straight from the cylinders to the throat plate and having "bearings" without
springs. The traction effort was transmitted from a stout pair of plates
athwart the main frames at the extreme rear end, and so there was no pull
through the firebox.
The cylinders were horizontal, with valves on top placed central with the
cylinder-bore length. The slide-bars were oLthe four-bar pattern With their
rear ends attached to a stout cross-piece- motion-plate, as it came to be
called later-stretching right across the three inside frame-members, whilst
their front ends were attached to the cylmder covers. The boiler-feed was
from ram-pumps upon extensions of the cross-head gudgeon-pins outside the
slide-bars, the delivery being low down slightly forward of the middle of
the boiler-barrel. The valve-gear was no doubt of the special form employed
by Hawthorn at this period in which the use of eccentrics was avoided; the
motion being derived from the connecting-rod by means of a block located
about the middle of its length, working in a slotted frame from which motion
was given to the valve-rod through a rocking arm of the Carmichael type.
There was necessarily much "thrashing about" of relatively heavy parts in
service, and in addition a considerable portion of the gear was generally
hung from the boiler-barrel; both features undesirable. Reversing was obtained
by a single lever upon the footplate which changed the engagement of the
valve-rods with the fore-gear or back-gear pins of the Carmichael "T" lever-the
gab-horns being tapered wide enough to accomplish thisand also varied
the disposition of the slot- link, thus providing the necessary variations
in valve events. The valves, although above the cylinders, were operated
without the intervention of rocking-shafts. .
The boiler had a slightly raised top to the firebox shell, and the firebox
crown was supported by longitudinal roof-bars, the firehole having no "ring",
but the plates were pinched together at the centre of the water-Ieg-something
of an early attempt at the "Webb" form of later years. It is notable that
the flanging around the firebox shell was practically square, no real radii
being given, and this also applies to the corners of the inside firebox;
this was a pooralthough not very unusualfeature of the time.
The regulator was in the smokebox, the internal steam-pipe leading thereto
from very high up, in the dome. There were rather. elaborate supports, for
the boiler upon the side of the srnokebox, very similar to that of Tayleur's
engines and for the same reason, as there were no transverse ties from the
inner group of frames to the outside frames at this region. These Hawthorn
engines were a good, straight- forward job, and in fact it can be said that
with the exception of the "exotic" valve-gear they were probably the most
soundly-constructed of all the twelve singles. No incidents of their after-care
are known, unless it was really one of them which was the protagonist in
the misbehaviour attributed by "Veritas Vincit" to Mather Dixon's
Barton.
Stirling Everard. Cowlairs commentary. 155-7. 2
illustrations (drawings: side elevations)
Continued from page 52) The rebuilding
of the Wheatley classes began in the eighties. The 17in. goods engines were
given boilers comparable to those of the Drummond machines, and the 16in.
mineral engines, the large tank classes, the 4-4-0 and the 2-4-0 designs
were similarly brought into line with current Cowlairs practice. The two
0-4-0 mineral locomotives were not only rebuilt by Holmes, but were subsequently
again completely modernised, although on the duplicate list, being given
new boilers, 4ft. 3in. wheels and abbreviated cabs of the latest type, but,
for want of space, without side windows. In this form they continued in service
until the nineteen-twenties, and were the last 0-4-0 tender engines to remain
in service in Britain. A number of Wheatley 's 4ft. 0in. mineral engines,
upon coming in for rebuilding, were converted to saddle tanks and transferred
to shunting duties. These were the series 430-449.
The one engine upon which Holmes let himself go was the unfortunate Wheatley
4-4-0 No .224. As if a sojourn in the Tay was not enough, this was the locomotive
chosen for conversion to compound propulsion. In 1885 No. 224 emerged from
Cowlairs as a Nisbit tandem compound with two 13in. x 24in. high pressure
cylinders mounted at the forward end of the frames in a position above the
leading axle of the bogie, and with two 20in. x 24in. low pressure cylinders
beneath the smokebox. Two separate sets of Joy valve gear were provided.
In this form it ran for a number of years, but whether the art of driving
a compound was not properly mastered by the engine men, or whether no master
touch could coax results from an unwilling steed will never be known, unless
and until official figures are published. The results, it must be assumed,
were not impressive, for No. 224 was later restored its previous layout as
a 17in. x 24in. simple, retaining, however, the Holmes boiler.
Most of the Wheatley rebuilds were scrapped, but the reconstructed
Hawthorn, No. 38, was again rebuilt, this time as an additional unit of the
349 class of double-framed 2-4-0. The rebuilt Crampton, No. 55, which had
reached the duplicate list as No. 100Q, was also reboilered , .os. 38 and
55 lasted for more than sixty years. Towards the end of his time Holmes began
the reboilering of the early Drummond engines, the N.B.R. No. 543 Drummond's
17in. Goods as running in 1921 18in. goods class receiving Stirling cabs
at the same time. The Drurnmond 4-4-0 locomotives were brought up to the
standard of the " 729 " class, receiving new and larger boilers and 18iin.
cylinders. The first put in hand received also the Stirling cab, while the
later rebuilds were given slightly larger boilers and the new design of side-
window cab.
After the introduction of the side-window cab the Drummond 17in. 0-6-0 engines
were allowed ta keep their Drummond cabs an rebuilding instead of having
them exchanged far the Stirling pattern, with the result that their appearance
changed little during the whole of their lang lives. The influence of Cowlairs
upon the locomotive design of other companies had been considerable in the
past, but during this period the only North British man to make his mark
elsewhere was Peter Drummand, the brother of Dugald, who in 1896 succeeded
David Jones on the Highland. He very soon introduced' the Drummond type of
locomotive to that concern, and made short work of many of the early Allan
types which were still to be found at Inverness, but it must be admitted
that he drew more inspiration from his brother than from Cowlairs, for the
North British had no use far the water-tube firebox nor for the "water- cart"
tender which' appeared on the neighbouring line as part and parcel of many
of the new Drummond machines.
In 1903, W.P. Reid, who had deputised during his Chief's illness, succeeded
Holrnes at Cowlairs, and was confronted by an immediate problem regarding
the company's motive power, for in 1903 the Caledonian had broken ground
so horrifyingly new that the North British people were put at a serious
disadvantage.
The facts of the case were these: McIntosh, having developed his 4-4-0 designs
to a high state of efficiency, had launched out with a huge 4-6-0 with 6ft.
6in. wheels and 21in. x 26in. inside cylinders, the Caledonian company's
No. 49, which was obviously likely to be the first of many similar or even
better machines. Moreover the Caledonian showed signs of developing what
would now be called "luxury corridor expresses," and this meant that the
North British must be provided with similar heavy rolling stock. To handle
the East Coast traffic north of Edinburgh, however, the North British could
put in the field nothing more formidable than the new 317 class of 4-4-0.
Reid immediately began to look into the question. Precedent suggested that
the North British should follow suit and build huge inside-cylindered 4-6-0
express engines on the McIntosh model, but this idea was soon dismissed by
the directors, who would not consider a six-coupled type for use on the Waverley
route. .
Thrown back upon the choice of a four-coupled type Reid not unnaturaly decided
upon the Atlantic layout, but experience was lacking as to the capabilities
of such engines. He therefore approached the locomotive departments of the
North Eastern and the Great Central companies for advice. Wilson Worsdell's
North Eastern Atlantics with 20in. x 28in. cylinders and 6ft. l0in. coupled
wheels were already working into Edinburgh on the East Coast expresses from
the south, having been introduced in 1903. Robinson's first Great Central
Atlantics having 6ft. 9in. coupled wheels and 19½in. x 26in. cylinders
had also come out in 1903. Both companies were considering the introduction
of compounds. The Cowlairs people found much to interest them in both designs
of simple 4-4-2, and also in Robinson's comparable design for a. Smith compound
Atlantic with one 19in. x 26in. high pressure inside cylinder and two outside
low-pressure cylinders, each 21in. x 26in.
Reid studied the Worsdell and Robinson types very carefully, and decided
to prepare alternative designs for the North British, the one compound, the
other simple. The compound design incorporated one 19in. by 26in. high pressure
inside cylinder and two 21in. by 26in. low pressure outside cylinders. The
coupled wheels were to be 6ft. 9in. in diameter, the boiler pressure 225lb.
per sq. in. The assumed weight of engine and tender was 113 tons, 43.7 tons
being carried by the coupled axles. In the end the compound design was shelved,
as the stakes were too high to entrust the company's competitive expresses
to experimental machines, and fourteen of the simple Atlantics were ordered
from the North British Locomotive Company, and were delivered' in 1906.
The new simple engines were a mixture of Great Central and North Eastern
practice. There was a complete break from the Drummond tradition. The wheelbase
of the new engines, 6ft. 6in. + 5ft. 91in. + 7ft. 3in. + 8ft. 3in. was the
same as that of the Great Central machines, and the raised running plate
was also similar, including the reduction of width forward of the front
splashers. The cylinders, however, were of the North Eastern dimensions of
20in. x 28in., and a North Eastern type of cab with two side windows' and
a high domed roof was adopted. Ill;ustrations (drawings): NBR Drummond 0-6-0
17-in goods No. 543 as running in 1921 and No. 875 Midlothian, Reid
4.4.2, as running in 1921
L.M.S.R. (N.C.C.). 157
Two of the standard 0-6-0 freight tanks have been adapted for the
5 ft. 3 in. gauge and are now numbered 18 and 19 (originally No. 16539 and
16636, and since 1936 Nos. 7456 and 7553 respectively).
L.M.S.R. 157
Since the beginning of July, 623 special L.M.S. trains conveying nearly
half a million evacuees left London (Euston and St. Pancras stations) for
the Midlands and the North.
Condensing locomotives. 157-8.
As mentioned in our report on page 136
the paper on Condensing Locomotives recently presented
to the Institution of Mechanical
Engineers was followed by an interesting discussion; the following matters
were among those commented upon. O.V.S. Bulleid stated that the steam locomotive
to-day was a machine which was in competition with other forms of traction.
It was criticised as being inferior to the diesel-electric locomotive and
to the electric locomotive on several heads, the major one being its lack
of availability. When the causes of lack of availability were examined, it
was found that the fundamental cause was the use of raw water in the boiler,
which caused the steam locomotive to be out of service for something in the
order of 12 per cent of its time; consequently, anything which could be done
to reduce that loss of time necessitated by washing out the boiler, or repairing
damage due to dirt in the boiler, would at once contribute to the greatly
increased availability of what was, after all, the best traction machine
at our disposal. The present paper, therefore, by calling attention to the
question of the recovery of the water, was very valuable,. and it was that
recovery which was very much more important in locomotive practice than any
question of a saving of 2, 3 or 4 per cent. in the fuel burned in the locomotive.
It would be appreciated that, taking the coal consumption of a locomotive
as of the order of 50 lb. per mile, and having in mind the fact that that
consumption included the lighting up of the locomotive, the fuel thrown away
when the engine was taken out of service, the standby losses when the engine
was standing, and, above all, the fact that at one moment the locomotive
would be working at high rates of output, using the whole of the steam available,
and at another moment would be running under very low conditions of pressure
and very early cut-off, it was not to be hoped that any substantial reduction
in that figure of 50 lb. per mile would be effected by condensing. On the
other hand, if, as he had said, it was possible to avoid filling the boiler
with raw water, that would be a means of very substantially improving the
use which could be made of the locomotive.
Sir Williarn Stanier considered the paper an interesting review of the number
of experiments which had been made with condensing locomotives, and remarked
that the authors had hit the nail on the head when they said that from the
practical point of view any locomotive should be not only be economical and
flexible in control, but as simple as possible. With regard to turbine
locomotives, unfortunately, in this country, the conditions were not such
that turbine power could be used efficiently, because the conditions varied
foot by foot along the road. When an engine was called on, as Bulleid had
said, for maximum output over a short section and theri for zero output over
the next, it did not promote the efficient working of the turbine. The experiment
made on the L.M:S. Railway with a non-condensing turbine locomotive had
indicated, as far as it had gone, that the coal consumption per D.B.H.P .-hour
was very much the same on the turbine locomotive as on the four-cylinder
locomotives on work of the same nature. The turbine locomotive was employed
only on straightforward runs between London and Liverpool, and not on trains
stopping at many intermediate stations. So far as the coal consumption was
concerned, the comparison between the reciprocating engine and the turbine
engine was of the order of 2.8 lb. per D.B.H.P.-hour and 2.78 lb. per
D.B.H.P.-hour, while the water consumption was 24.7 lb. and 24.8 lb.
respectively. The evaporation per pound of coal was 8.3 and 8.4. There was
very little in it when there was no condensing
E.S. Cox said that two of the condensing locomotives mentioned in the paper
were tried on the L.M.S. Railway, and some notes as to their performance
would allow certain conclusions to be drawn. The first was the second of
the two Ramsay locomotives mentioned in the paper. It was a two-unit locomotive
of the 2-6-00-6-2 type. It was designed with four 275 h.p. traction
motors, and the intention of its designers was to produce a locomotive of
approximately the same power as the. London & North Western Railway
four-cylinder Claughton locomotive of those days. This engine was delivered
at the Horwich works of the London, Midland & Scottish Railway in February,
1922, and on weighing it was found to be 35 tons above its designed weight,
with individual axle loadings as high as 24 tonsan unheard of figure
in those days. At first It was rejected out of hand by the engineer, but
afterwards permission was given for it to run as far as Southport, a distance
of 25 miles, and throughout its whole life its test runs had to be confined
to that short distance.
The results at first were very unsatisfactory. The .motor-driven forced-draught
system was so defective that proper combustion was impossible, and even when
running light there was heavy smoking and inability to maintain the pressure.
Moreover, the condenser, which was of the evaporative type, was not at first
able to produce a higher vacuum than 20 in., though designed for a vacuum
of 2H in. and therefore increased steam consumption m';de impossible demands
on the limited boiler -capacity. By the end of June of tha.t year vanous
alterations had been carried out WIth a VIew to improving the running, inclu.~ing
a new chimney with a blast arrangement takmg steam from the condenser ejector,
and a larger condenser of the "Same type was fitted. Between November, 1922,
and June, 1923, a number of trials was carried out with this engine to Southport
WIth a trailing load of 65 tons, when a maximum speed of 59 m.p.h. was attained.
The engine was cut up and sold for scrap in 1924.
The second condensing locomotive. which. was run on the London Midland &
Scottish Railway was the Beyer-Peacock Ljungstrbm, a direct-drive turbine
locomotive. It was a much more practical proposition and ran for a while
on regular express passenger train work between Manchester and Lon- don.
In May, 1927, on a test run from Derby to Bedford and back a maximum speed
of 76 m.p.h. and 1 ,2QO D.B.H.P. were obtained. Tl'te coal consumption, however,
was 57.lb. per mile and 5.6 lb. per D.B.H.P.-hour, because at that early
st,:ge the same troubles were being expenenced as WIth the previous turbine
locomotive.
Generally speaking, boiler pressure and con- denser vacuum were well maintained,
except that on the 1 in 100 bank starting south from Sheffield, when the
locomotive had to pass through a tunnel very slowly, the extremely powerful
fans drew off all the soot on the tunnel lining and such smoke as might be
coming from the chimney, and that led to trouble.
Mr. H. Ho1croft described in some detail the unusual form of condensing applied
to a Southern Railway locomotive some fifteen years ago. (See page 104, Vol.
XLII). The whole of the exhaust steam from the cylinders entered an oil separator
on its way to a multi-tubular cooler, the headers of which were formed to
make the steam pass three times through the cooler. On emerging from the
bottom set of tubes the steam was dealt with by a three-throw combined compressor
and feed pump, from which it was discharged as feed to the boiler. The working
fluid of the engine therefore operated in a closed circuit .. Water carried
m the tender was . fed to the cooler and was evaporated there at 212 deg.
Fahr. under atmospheric pre~sure, and the vapour resulting was conveniently
discharged WIth the products of combustion in the chimney .. Th~ function
of this water was to abstract a portion or the heat contained in the exhaust
steam and so con- dition it that the special form of pump could deal with
it.' In order to create a temperature difference to bring about the necessary
heat transmission across the tubular cooling surface, the temperature
corresponding to a back pressure .on the cylinders of from 4 lb. to 7 lb.
per square m. above atmos- pheric was sufficient under normal conditions,
being no more than that usually found at the base of a blast pipe in an ordinary
locomotive. An induced draught fan was provided in place of the blast pipe.
The work obtained from the steam passing through the cylinders was not greater
than in. an ordinary locomotive. Fuel economy was entirely on the boiler
side due to the return heat to the boiler ; III other words there was an
increased evaporation per pound of fuel. The system was not suitable for
waterless regions, but was of value where water supplies contained impurities.
It was independent of atmospheric temperature and could therefore be used
in hot climates and high altitudes. This report has been confined, due to
considera- tions of space, to some of the matters raised affecting British
practice, but other speakers con- tributed interesting points, on Amencan
and Colonial locomotive design and operation.
The first locomotive in Russia. 159. illustration
Robert Young in Timothy Hackworth
and the Locomotive states:
In 1836 Hackworth built a locomotive for the Russian Government, and despatched it in the autumn of that year, which was the first ever run in that country. It was a 'double trunk' engine, of handsome appearance, built with firebox and smokebox, and containing 135 horizontal boiler tubes It in. diameter. The cylinders were 17 in. diameter with a stroke of 9 in. only, and the whole was mounted on six wheels with single drivers 5 ft. diameter, the leading and trailing wheels being 3 ft. 6 in. diameter. (Locomotives with short- stroke pistons had some vogue during the next year or two, but the practice was not long continued.) Hackworth's ledger shows the total cost of the engine was £1,884 2s. 9id., which included £140 for the wheels and £330 9s. 0d. for the tender, the . latter being fitted with brakes and capacious tank. .1
The duty of introducing the locomotive to Russia devolved upon Hackworth's
eldest son, John, then not quite 17 years old. But he was a well set-up youth,
nearly as tall as his father, was a keen and clever young engineer absorbed
in his profession, and in appearance much older than his years. The summer
was over before the little party started, and the journey was by no means
devoid of adventure. At that time of the year the ordinary channels of
communication were closed, and they had to land at some open port in the
Baltic, and make the journey to St. Petersburg by sleigh in weather so severe
that the spirit bottles broke with the frost, .and they had to run the gauntlet
of a pack of wolves. John Hackworth had a small staff of men with him, including
a foreman from Shildon, George Thompson, whose mime deserves recording for
a smart piece of work which he carried out. When the engine had worked a
few days one of the cylinders cracked, and Thompson went from St. Petersburg
to Moscow, a distance of 600 miles, to the ordnance factory, made a pattern
for the cylinder, got it cast, bored out and fitted, returned to St. Petersburg,
and fixed it in the engine (The Graham Reports).
John Hackworth has left some record of his visit among his manuscripts, from
which we find the engine was taken by him from St. Petersburg to Tsarskoye-Selo,
where the Imperial Summer Palace was situated. It was here that the locomotive
was. started in the presence of the Tsar and a distinguished company in November,
1836. Young Hackworth relates that he was introduced to the Tsar Nicholas,
who told him of a visit paid to England m 1816, before his accession to the
throne, when he had witnessed with great pleasure· the runnmg of
Blenkinsop's engines on the colliery line from Middleton to Leeds. The Tsar
added some complimentary remarks regarding the new locomotive under their
present inspection, saying' 'he could not have conceived it possible so radical.
a change could have been effected within twentv years.' j
The engine, before being brought into public requisition, had to be put through
a baptismal ceremony of consecration according to the rites of the Greek
Church. This was done in the presence of the assembled crowd. Water was obtained
from a neighbouring bog or "stele" in a golden censer and sanctified. by
immersions of a golden cross, amid the chantmg of choristers and intonations
of priests,. while a hundred lighted tapers were held round It.
This was followed by the invocation of special blessmgs upon the Tsar and
Imperial Family, and fervent supplications that on all occasions of travel
by the new mode, just being inaugurated; they might be well and safely conveyed.
Then came the due Administration of the Ordinance by one priest bearing the
holy censer; while a second, operating with a huge brush and dipping in the
censer, dashed each wheel with the sign of the cross, with final copious
showers all over the engine, of which John Hackworth was an involuntary
partaker." When discussing "short stroke" locomotives, Ahrons tells us that
Timothy Hackworth also tried this type in a locomotive built in 1836 for
Russia, which had cylinders 17 in. diameter and a stroke of only 9 in. It
was 2-2-2 type with 5 ft. driving' wheels, outside frames .and inside horizontal
cylinders. It was also the first engine built at Shildon with a multibular
boiler and inside firebox of the ordinary type. Most of Hackworth's engines
carried boilers which were modifications of the single flue type and were
fired from the funnel end-in fact he continued to build these at Shildon
until 1842. They were not suited to fast running and passenger work.
The Russian engine was built at Shildon, but it is interesting to note that
the funnel and boiler mountings were exactly as fitted to Hawthorn's engine,
The Comet, in 1835, for the Newcastle &' Carlisle Railway. Perhaps he
bought the boiler and fittings complete from Hawthorns, especially as he
was not used to making this type of boiler. Illustration: Hackworth's Locomotive
for Russia (From a drawing by C. M. Doncaster)
[O.S. Nock]. Automatic train control in Great Britain.
Part 2. 160-2. 2 illustrations
Continued from page 142.
The Great Western system of intermittent Automatic
Train Control is very simple. When approaching a distant signal the locomotive
passes first over a ramp fixed in the four-foot way, and usually located
about 300 yards before the signal itself. The central portion of the ramp
is 4 in. above rail level,. and the outer portions are sloped down to a height
of 2½ in. above rail level at each end. A contact shoe is suspended
from the locomotive, and to this shoe is imparted a vertical motion of 1½
in. when passing over a ramp. The vertical motion takes place every time
a distant signal is passed, and, of course, irrespective of whether the signal
is displaying the "clear" or "caution" indication. An electric switch is
controlled by the vertical movement of the shoe, the' contacts being closed
when the shoe is in its normal position and open when raised due to passage
over a ramp. The equipment on the locomotive is so designed that passage
over a ramp, and the consequent opening of the switch, applies the train
brakes, unless the ramp is electrified. First of all, however, consideration
will be given to the case when the ramp is dead.
In normal running conditions a battery on the locomotive supplies current,
through a switch controlled by the contact shoe, to energise an electro-magnet;
when a dead ramp is passed over the armature of this electro-magnet falls
and opens a valve, which admits air to the brake pipe and sounds a siren
in the locomotive cab. The armature falls away to such a position that the
air-gap between it and the pole faces of the electro-magnet is greater than
the pull of the magnet when energised can overcome so that when the locomotive
has passed over the ramp and the electric switch controlled by the contact
shoe is closed again the electro-magnet remains in the de-energised position.
The only way the armature of the electro-magnet can be brought up to the
pole- face once more is by the driver moving it mechanically, by means of
the re-setting lever. It will be appreciated by this that the energised position
of the electro-magnet can be restored at any time; and that there is nothing
to prevent a driver who is on the alert from depressing his re-setting lever
immediately he sights an adverse distant signal- before his locomotive passes
over the ramp by thus keeping the lever depressed the opening of the train
control valve can be avoided altogether. The contact rail of the ramp is
connected to a cabin battery, and when a locomotive passes over, with the
distant signal in the "clear" position, the circuit is completed to earth
through the contact shoe, and through a'relay carried in the engine cab.
This relay is energised during passage over an electrified ramp, and by the
Closing of certain contacts on the relay during this time an alternative
circuit is made up which maintains current on the electro-magnet controlling
the A.T.C. valve; the . opening of the contact shoe switch is thereby coun-
teracted. A bell starts to ring at the same time. Even in the case of clear
signals a positive action must be made by the driver at each distant signal
location; for unless he presses an acknowledging button the bell will continue
to ring. The apparatus is neatly housed in a small case mounted on the right-hand
side sheet of the locomotive cab, thus bringing the units providing the audible
signals close to the driver's normal position.
A variation in the position of the ramp has to be made at locations where
home and distant arms are mounted on the same post. If the ramp were fixed
at its normal distance, about 300 yards before the signal itself, the audible
signals would be received in the cab just at a time when the indication displayed
by the home signal might be of considerably greater importance than that
of the distant. A driver who had passed the previous distant signal at "caution"
would ne running with full vigilance and preparing to stop at the home signal;
with a heavy train he would naturally be anxious to avoid a dead stand, and
would be approaching slowly, constantly watching for the signal to dear.
In such circumstances the receipt of the audible signal corresponding to
the "caution" aspect of the distant arm would be no more than a distraction.
Thus, to leave the driver free to observe the stop signal, the A.T.C. ramp
is placed just beyond the signal post, and when the upper arm is in the clear
position and the train is passing the particular location the audible signal
corresponding to the position of the distant arm is received immediately
after the signal itself has been passed.
Several accidents have occurred in this country over the past forty odd years
the cause of which has never been definitely ascertained, largely due to
the death of the men most concerned. In the derailment at Grantham in 1906
it was generally thought that the unfortunate driver was taken ill and that
his fireman was so concerned in rendering assistance that they ran past all
the si,gnals, with disastrous results. In the Shrewsbury accident in the
same year it was generally supposed that the driver was dozing. In a recent
instance on the L.N.E.R. this latter form of negligence was actually shown
to be the cause of a rear-end collision. With these happenings in mind, it
is naturally interesting to find out what would, occur on a line equipped
with the G.W.R. system of A.T.C. were a locomotive crew, through some exceptional
circumstances, to lose control for a short time. With this object in view
a test was made, shortly before the present war, between Paddington and Reading.
The test train was hauled by a 4-6-0 locomotive of the "Castle" class, weighing
with its tender 126½ tons; the train consisted of ten bogie passenger
coaches, and weighed 304 tons behind the tender.
On a straight and level section of line a distant signal was kept in the
"caution" position; the driver was instructed to ignore this signal altogether,
to ignore the audible cab signal, and to omit to use the re-setting lever-in
other words, to let the engine continue as though it were out of control.
With the regulator open and at a speed of 59 m.p.h. the ramp was duly passed
over. The brakes were automatically applied, and, though continuing with
steam on and no change in the controls, the train was brought to a stand
in 900 yards from the ramp. At this particular location the ramp is situated
318 yards before the distant signal, and with a distance of 1,032 yards between
the distant and the home signals,. the locomotive stopped 450 yards short
of the "home". Although the speed from which the train was stopped, 59 m.p.h.,
is not high by modern standards of running with a load of 300 tons on level
track, the stop may be regarded as a very good one. With such a load the
same type of locomotive is easily capable of maintaining 80 rnile/h. on level
track, and in stopping under similar circumstances the margin of 450 yards
would probably be fully absorbed.
The lines of the former London, Tilbury & Southend Railway have been
equipped with the Hudd system of intermittent A.T.C., again based upon the
existing manual block signalling. The basic principles, of control, and audible
signals in the cab, are exactly the same as on the Great Western Railway,
except that the indications are received inductively instead of through contact
between the ramp and the locomotive shoe. In this particular L.M.S.R.
installation there is one important difference in the nature of the "clear"
indication given in the cab; this is sounded on the same hooter that provides
the "caution" indication. The "clear" is one short blast and the "caution"
is a continuous note that sounds until the driver silences it by pressing
the acknowledging button. Recently, however, a modified design has been prepared
in which the "clear" indication is given by the ringing of a bell, thus bringing
the cab signals into exact conformity with those given by the Great Western
system.
Although the indications received are so very similar, the locomotive equipment
for the Hudd system is entirely different from that of the Great Western
on account of the inductive pick-up. On the track two inductors are used
instead of a contact ramp, one inductor being placed about 60 ft. ahead of
the other. The first of these is a permanent magnet, and the second an
electro-magnet energised only when the distant signal is in the clear position.
Passage over the permanent magnet causes a magnetically controlled valve
on the locomotive to open, and this partially destroys the vacuum normally
maintained on the hooter valve; the hooter thereupon begins to sound. The
second track inductor has a polarity opposite to that of the first, and if
it is energised it counteracts the effect of the first inductor upon the
magnetically-controlled valve on the locomotive, and restores the vacuum
in the hooter valve. If, however, the second inductor is not alive, the
locomotive valve will remain as set after passage over the first inductor,
and the hooter will continue to sound. The hooter valve also controls admission
of air to the A. T. e. brake valve, though a time lag device is included
to prevent a brake application being made until the locomotive has passed
over the second inductor.
The completion of another important installation of the Hudd A.T.C. system,
namely on the L.N.E.R. main line between Edinburgh and Glasgow, has been
held up on account 'of the war. For any installation of A.T.C. to be fully
effective, both for providing increased safety, and in making possible improved
working in conditions of bad visibility, it is necessary for all the locomotives
operating over that section of . line to be equipped. Therein lies a point
of some difficulty where British railways are concerned. The rostering of
locomotives, particularly on the L.M.S.R. and L.N.E.R., tends to become more
and more complex, and units from manv depots, both English and Scottish,
may regularly operate over a particular section of line ,chosen for a trial
of A.T.C. apparatus. This, in part, explains the choice by the L.M.S.R. of
the Southend line, and by the L.N.E.R. of the Edinburgh-Glasgow main line
for installations of the Hudd apparatus; for both these sections are more
or less self-contained so far as locomotive workings are concerned. It is
only after such extensive trials that any decision to standardise on a particular
system can be made. What the complete equipment of an entire main-line network
involves may be seen by referring to the Great Western Railway, which has
laid down 2,114 ramps, and their associated apparatus, and equipped over
3,000 locomotives. Illustrations: L.M.S.R. View showing track inductors on
a double-slip crossing. Hudd A.T.C. System; L.M.S. Hudd System. A.T.C. location,
showing relation of permanent and electro magnets. (E. R. Wethersett)
4-8-4 passenger-freight locomotives, U.S.A. 162
The Northern Pacific Railroad put into service a number of 4-8-4 type
locomotives for hauling heavy passenger and freight trains over the steep
gradients in the Rocky Mountains. They have driving wheels 6 ft.1in. diameter
and cylinders 26 in. diameter by 30 in. stroke. The weight of the engine
totals 246 tons, of which 140 tons is on the driving wheels. The boiler is
7 ft. 6 in. diameter and has a working pressure of 285 lb. The firebox was
12 ft. 6 in. by 8 ft. 6 in., with a heating surface of 559
ft2. The tender ran on six-wheeled bogies and had
a capacity for 20 tons of coal and 20;000 gallons of water.
Australia's narrow gauge railways. 162
The sum of £1,600,000 had been allocated for the construction
of narrow gauge locomotives and rolling stock to meet increased needs.
On Time. 162
A survey of the running of special trams for workers at Royal Ordnance
factories revealed that punctuality was 99 per cent. perfect. During a recent
month, at six of the largest factories, from the point of view of passenger
traffic, which between them received 3,070 trains, only 23 arnved more than
ten minutes late. At twq.of these factories, out of a total of 1,350, not
a single train was late.
F.C. Hambleton. Great Western goods engines. Class
2361. 162-3. 2 illustrations (line drawings: side elevations)
Twenty interesting goods engines were built at Swindon in 1885-1886
from the designs of William Dean. These locomotives had the unusual combination
of double frames with underhung springs fitted to the outside axleboxes.
Dean, from his early days as an articled pupil in 1855 to Joseph Armstrong
at Wolverhampton, was very familiar with the old G.W.R. type of double-framed
engine, and remained throughout his life an adherent of this method of
construction. Indeed, even to-day it is one of the surviving features of
many Swindon products. In the period under notice (1885) Dean made some attempt
at standardisations in four designs: the 0-6-0 goods, the 40 saddleback
counterparts of the same class, the mixed-traffic 2-4-0 Barnum class, and
the smaller version known as the Stella type. As regards the boilers, his
early preference for domeless barrels had given place to a design in which
a rather tall and narrow dome was placed fairly near the chimney. In later
years his domes got bigger and were positioned nearer to the firebox, and
finally disappeared altogether with the advent of the domeless Camel and
Atbara classes! The clack-boxes were placed, in the 2361 class, on the firebox
sides, just above the footplatesanother example of the survival of
early locomotive practice. Like all G.W.R. engines, there was a considerable
amount of polished brass and copper work in evidenceeven the clack-box
seatings were covered with an ornamental brass plate. All this contributed
to the handsome appearance of these excellent engines. The effect of the
big polished dome-covers and valve-casings was really wonderful, and made
the G.W. engines of those days most fascinating to behold. Many of the mechanical
details were also very interesting. For instance, the elegant safety-valve
cover enclosed two safety-valves, one a small direct-loaded valve, the other
a Salter. The spring and its casing were attached to the firebox front, and
the wooden cab roof had a hole on the left hand side through which the spindle
and adjusting nut projected! The gauge glass cocks were connected by a rod,
with a lever to actuate the same, placed outside the left cab sheet, a useful
and safe method of control in the event of a glass bursting. Behind the gauge
glass was a connecting pipe on which were mounted two test-cocks. The link
motion was underhung, and balanced by a long, horizontal spiral spring. The
very long reversing lever passed through a slot in the cab floor to its fulcrum
below. This arrangement recalls the similar one fitted to Stroudley's celebrated
L.B.S.C.R. 6 ft. 9 in. single, Grosvenor. The intermediate valve spindles
had rectangular bearing 'surfaces through the motion plate, and these, and
the forked small ends of the connecting rods with their straps and cotters,
were features taken from the L.N.W.R. DX goods engines. A steam brake was
provided, the cylinders of which were placed behind the cab footsteps.
The principal dimensions were: Cylinders, 17 in. by 26 in.; 5 ft. 1 in. wheels;
wheelbase, 7 ft. 9 in. plus 8 ft. 0 in.; heating surface, 1,157
ft2.; grate area, 15.2
ft2; 140 psi. The second drawing shows the engines
as rebuilt with Belpaire fireboxes, and with other slight modfications. They
were numbered 2361 to 2380, Swindon numbers 1032 to 1051, the first appearing
in September, 1885, and the last in May, 1886.
illustrations: G.W.R. No. 2374 0-6-0 Goods; G.W.R. No. 2366 0-6-0 Goods,
rebuilt
Pullman with three decks. 163
Designed by the Pullman Standard Car Manufacturing Co. for post-war
development. The Railway Age (Chicago) descnbes it as having four
side entrances on the middle level, one on each side at each end. This level
extends into the coach and over the trucks, and each end contains two game
or card rooms with seats for four persons each. From this middle level, which
is at the same height as present coach floors, two side stairways lead to
the lower deck and cne central stairway leads to the upper deck. The lower
deck is about five steps below and the upper five steps above the middle
deck. The height of the coach is about 13½ ft. Wide windows are incorporated
in the design, while general artificial lighting is supplemented with specially
focused lighting at the reading level in each seat. Accommodation for 112
passengers is provided.
South African Railways. 163
It had been decided that the essentials of the S.A. Railways plan
for New Cape Town should be proceeded with. The new suburban station will
have to deal with 30,000 passengers per hour during the peak hours. Over
67 million journeys per annum being made on the Cape Town suburban
system.
Railway steamers. 163
Since the outbreak of war 92 British Railways' steamers had been chartered
to the Government at varying periods as hospital carriers, transports, assault
ships, minelayers and sweepers, ammunition carriers, ack-ack ships and rescue
ships with Atlantic convoys; and 23 had been lost by enemy action. Certain
of the vessels flew the White Ensign and ran directly under the control of
the British Navy, while others were still manned by their peace-time crews,
many of whom, both officers and ratings, had received awards for gallantry
at sea.
The first American troops from Ireland to this country were brought on an
S.R. steamer, while vessels of all four companies played their part at Dunkirk,
in which operation some eight were lost. An L.M.S. steamer was the last merchant
ship to leave Dunkirk.
A famous G.W.R. steamer, the St. Patrick, was sunk by enemy air attack
on 13 June 1941, while on her ordinary passage from Ireland to England. The
master, I7 of the crew and 12 passengers lost their lives. Another G.W.R.
steamer, the St. David, employed as a hospital carrier, was bombed
and sunk off Anzio Beach, the master and 12 of the crew losing their lives,
apart from many military casualties.
The s.s. Autocarrier of the Southern Railway, known in peace-time
as the motorists' steamer, was now a Navy recreation ship, providing comforts,
entertainments and recreation facilities to the various vessels of the Royal
Navy. The three train ferry vessels of the S.R., which enabled through sleeping
cars to be run between London and Paris, were doing useful and interesting
work elsewhere. The G.W.R. cross-channel steamer St. Helier, the L.M.S.
Clyde steamer Caledonia and the Isle of Wight Southern steamer
Southsea each had an enemy. aircraft to its credit, while the L.M.S.
Clyde boat Queen Empress shot down two.
No fewer than nine L.M.S. Clyde steamers were fitted out as minesweepers
and have done good work round the coast of Britain. Five of them rendered
notable service in a similar capacity in WW1..
Several L.N.E.R. steamers performed signal services in bringing evacuees
from Holland at the time of the German invasion. One well-known Harwich steamer,
the St. Denis, had to be scuttled and abandoned in Rotterdam. The
crew, after great hardship, made their way to the Hook of Holland and returned
to England in a British destroyer. The L.N.E.R. cargo steamer
Sheringham worked for a time in the Channel Islands services, while
other L.N.E.R. vessels, the goods train ferries normally on the Harwich-Zeebrugge
route, assisted in the Channel Islands evacuation. One of these vessels was
lost in evacuating British troops from St. Valery. On the same occasion two
G.W.R. cargo vessels narrowly escaped destruction, being badly damaged, whilst
several of the crews were killed and others wounded. In peace-time, steamers
of the British railwaysnumbering in all 130plied daily and nightly
between English and Scottish ports on the one hand, and those of Scandinavia,
the Low Countries, France, the Channel Islands and Ireland on the other.
Smaller railway steamers operated between the mainland and the Isle of Wight,
the Scottish islands, and so on.
Mobile power generating plants for Russia. 163
Complete power generating plants mounted on specially designed railway
cars for use in rebuilding devastated areas and for operation of repair plants
are being delivered from the United States. There are forty 3,000 kW. and
twenty-three 1,000 kW. plants being supplied by the General Electric Co.
and the American Car & Foundry Co. The Westinghouse Electric &
Manufacturing Co. is supplying power units for ten 5,000 kW. trains and
twenty-four 1,000 kW. trains. Each of the 3,000 kW. plants' consists of seven
or eight cars, depending on the method of cooling. There are two boiler cars
with tenders, one turbine car, one switch gear car, three cooling tower cars
(or two radiator type cars) and one car for the crew. (Railway Mechanical
Engineer.)
Correspondence. 164
S.A.R Class 19-C engines. M.M. Loubser (Chief Mechanical
Engineer, S.A.R)
Re article entitled Performance of Class 19-C engmes .on
the South African Railways and letter with reference
to the same subject.
The article quotes various detailed performances, and the paragraph,
"I know of no other type of. branch line locomotive on the S.A.R.or
anywhere else in the wo:ld for that matterthat can be relied upon to
perform with such extraordinary versatility", sums up the trend of the first
part. The letter says: "I do not know how a similar engine having, say, a
Walschaerts gear, would perform, but such a comparison would be very
interesting..
The Class 19-D locomotive is a similar engine with Walschaerts gear, and
I cannot do better than give briefly the results of comparative dynamometer
car tests.
The steam consumption curves in lb; per hour per h.p. for drawbar, effective
and indicated horsepower indicate that the Walschaerts gear is more economical
than the R.C. poppet valve gear in the use of steam by 10 to 11 per cent.
These values are independent of the boiler except inso far as the quality
of the steam is concerned. The two boilers are very similar, and while the
pressure would therefore be substantially the same in all circumst:nces,
the superheat on the 19-D was higher by 20 to 40 Fahr. This would account
for a difference of from 2 to 4½ per cent., but the remaining 6 to 8
per cent. must be put down to better performance of the engine with the
Walschaerts g:ear. Generally, therefore, the 19-D was the supenor engine,
alld this was evident even without the dynamometer car test results.
Regarding the comparison of maintenance costs, I can only say that our experience
is just the opposite to that quoted, as the following average figures indicate
very clearly:
Class of Locomotive | 19-C | 19-D | |
Type of Valve Gear | RC | Wal | |
(pence per mile) | |||
(1) | Total cost of maintenance, 1941-42 | 8.80 | 4.85 |
(2) | Total cost of maintenance, 1942-43 | 7.55 | 5.46 |
(3) | Cost of heavy repairs, 1941-42 | 4.18 | 1.81 |
(4) | Cost of heavy repairs, 1942-43 | 3·98 | 2.03 |
(5) | Cost of Heavy Repairs, exclusive of boilers, 1941-42 | 3·37 | 1.35 |
(6) | Cost of Heavy Repairs, exclusive of boilers, 1942-43 | 2.95 | 1.55 |
Condensing locomotives. C.R.H.
Simpson.
W.O. Skeat, in his letter published on page 96 of "The Locomotive",
refers to the possibility of the Reid-MacLeod Turbo-Locomotive exhibited
at Wembley in 1924 being a rebuilt version of the Electro-Turbo- Locomotive
of 1910. Volume I '(l1927) of The Beyer-Peacock Quarterly Review
contained a series of excellent articles on the subject of The Turbine Condenser
Locomotive, and in the second of these the 1910 engine is illustrated and
described, after which it is stated that "this locomotive has within recent
years been considerably modified, the whole of the electric transmission
being removed and substituted by direct gearing. the turbines being arranged
on each bogie frame ... " etc. Illustrations are given of the engine in its
rebuilt condition, i.e., as .exhibited at Wembley. Apart from the same bogies
being utilised after alteration, it appears that the original frame was also
retained.
Locomotive design and train operation in the
future. D.H. Miles.
Re Editorial in August issue which noted the possibility of all freight
wagons bemg fitted with continuous brakes. It does seem doubtful whether
the time saved on the jonrney would be as great as the time asted coupling
and uncoupling the brake connections, and it would seem that more congestion
would be caused at the marshalling yards than would be saved on the roads.
On the other hand, there are a number of measures connected with the lay-out
of the running roads which would enable considerably higher speeds to be
run by freight trams than at present. Firstly, consider the analogy of the
other trains where the normal distance was inadequate to pull up, namely
the "streamlined" trains pre-war of the L.N.E.R. The method adopted here
was the double-block system. This clearly would be impracticable for any
but the extremely limited extent to which It was required for the
streamlined trains. But m its place .it should be possible to have
a repeater for the distant signal. It is. already done with four-aspect colour
light signalling, and this would meet requirements where sections are short.
On longer sections an outer distant signal should be placed, roughly as far
from the distant signal as that signal is from the first stop signal. ..
The next consideration is that relief roads should be suitable for running
at fairly high speeds. This would mean:
(1) That they should be continuous, and not be interrupted by stretches where
trains have to use the main line.
(2) That, particularly at stations and junctions, realignment would be necessary
to enable higher speeds to be run.
(3) That permissive block working be discontinued. (There would be exceptions
where it would be desirable to retain it.)
(4) That signalling be installed on slow roads as described above for main
roads.
(5) Slips to or from the main road should similarly be signalled with distant
signals.
Reviews. 164
Cargo coaling plants. J. Dalziel. Railway
Gazette.
This is a reprint of a series of articles which were published in
"The Railway Gazette". The author was formerly assistant electrical engineer
of the L.M.S.R., and he has covered in a comprehensive way the considerations
involved in the design, construction and operation of such plants.
Workmen's fares. Chas. E. Lee. Railway
Gazette.
This is a survey of the history of the provision of cheap daily travel
facilities and consists of extracts from a paper entitled "Passenger Class
Distinctions" which the author presented to the Institute of Transport.
Our railway history. R. Bucknell. Part 1.
48 pp. and 30 illustrations.
A short history of the railways of Great Britain to be completed in
three parts, the first of which, now published, . deals with the L.N.W.,
G,W., Midland, N.E. and G.N. railways. Written in a readable style and well
illustrated, this retells in brief fashion the origin and growth of our railways.
A few errors have crept in. We cannot recall any Atlantic engine named
Quentin Durward. The longest tunnel on the old G.N.R. is at Ponsbourne,
not Ponders End, whilst the L.N.W.R. engine Coronation came out as
5000 (its Crewe works number) and had been renumbered 1800, not vice-versa.
It is brightly written and. well printed, and we shall look forward with
interest to the remaining parts.
Number 627 (15 November 1944)
Economic life of locomotives. 165
Editorial:
Automatic train control in Great Britain. Part III. 165-8. illustration, 2 diagrams
Examination of locomotives on a mileage basis. 168-70
The locos of the Buenos Aires Northern Railway. 171-3. 6 diagrams (side elevations)
The North London Railway. 173-6.. 2 illustrations
McEwan, James. Locomotives of the Caledonian Railway. 177-8.
2 illustrations, table
Continued from page 146. As these engines were beginning to
wear out, McIntosh considered replacing them. The cost was considered too
great, and the engines were brought in turn to St. Rollox and reboilered
with standard boilers as fitted to the 0-6-0 side tanks. These boilers had
a heating surface of 1,086 ft2, of which the tubes provided 975
ft2. and the firebox 111 ft2t. The grate area was 17
ft2 and . the working pressure 150 lb. The weight was scarcely
altered. After the reboilering, which was done in March, 1898 (No. 542) and
November, 1897 (543) respectively, the engines returned to their old job.
In 1897 both had been taken from the duplicate list and riumbered 381 and
382 respectively. No. 381 was brought in for rebuilding in March, 1902, and
No. 382 followed in February, 1903. Some time subsequent to this both engines
got other tenders to replace their own, which had worn out. No. 382 got a
rebuilt passenger one with a footboard for the shunter added, whereas No.
381 acquired a four-wheeled one adapted for passenger working and also provided
with a footboard for the shunter. No. 382 had a mishap which subsequently
deprived it of its leading and trailing wheels, and these were replaced with
cast iron wheels fitted with, steel tyres. The change was noted about 1920,.
but the cause was apparently unknown to anyone. Both of the 0-6-0 type engines
lasted to become L.M.S. stock in 1923 with the numbers 17101 and 17102
respectively. They continued to work on the now shortened S.]. section between
Annan and Kirtlebridge until withdrawn in 1927 and 1928 respectively. These
were the oldest C.R. engines to have L.M.S. numbers.
After working on the S.]. section for some years the 0-4-2 well tanks were
sent to Glasgow (South Side sheds) to work on the Rutherglen to London Road
section, then for a short period were sent to v work on the Dundee &
Arbroath Joint Line. Both returned to Glasgow. No. 540 went to Perth and
shortly afterwards was sent to work the Millisle Branch (about 1890) and
finished its days there. No. 541 went to Grangemouth for the Larbert &
Grahamston trains, and finally finished up at Perth as the Methven branch
engine. The 0-4-2 engines were taken from the Solway Junction section when
the are traffic began to decline rapidly, (and worked between Carstairs,
Lanark and Muirkirk. Later, one went to Lockerbie and the other to the Brechin
to Bridge of Dun section.
The seventh engine of the Solway Junction Railway was destined to appear
more than once in a railway stock list. It was an 0-6-0 type saddle tank
of Manning Wardle's standard design, being their No. 196 of 1866. It was
supplied new to Eckersley & Bayliss at Chesterfield, but in the following
year was sold to Brassey & Co., who were the contractors for the Solway
Junction Railway. It had inside cylinders 11 in. diam. by 16 in. stroke,
and coupled wheels 3 ft. 0 in. diameter. After the completion of the line
the S.J.R. took, the engine over as previously arranged, as they expected
to have a use. for it as the yard shunting engine. On coming to the Caledonian
Railway it. was given the number. 539.. In January,1872 it was disposed of
to the contractor for ,the Wigtownshire Railway, and is fully creferred to
in the articles on the Wigtownshire. Railway: which appeared in THE LOCOMOTIVE
for 1943.
Before leaving the Solway Junction section. reference must be rnade to a
story which has been perpetuated, but of which no evidence of fact can be
produced, and supporters of the Maryport & Carlisle Railway must suffer
disillusionment. The myth is that M. & C. No. 5 was lent to the Caledonian
Railway by request and did such good work that the CR. people wanted to buy
it for their line; but that the M. & C. people in turn were so proud
of their handiwork that they refused to sell. No. 5 was a 2-2-2 type, tender
engine built at Maryport in 1857, and was inside-cylindered. The M, &
C. and Caledonian railways were, generally speaking, on fairly friendly terms,
and both Mr. Connor, of the CR., and Mr. George Tosh, of the M. & C.R.,
agreed to try the M. & C. engine out art the C.R. metals if their respective
directors would agree. Connor was an outside cylinder exponent, while the
M. & C. engineer favoured inside cylinders. No. 5 was tried out on the
C.R. main line about 1859 between Carlisle and Beattock, and forward later
to Carstairs with a regular train. Indicator cards were taken when the test
; was made, and it was generally agreed that while the engine had done well
it was not made for the C.R. route. The boiler failed to supply sufficient
steam while ascending the Beattock incline, but could generate plenty for
the level parts of the line. The other drawback was the light loading of
the driving axle compared with the Conner passenger engines. The
conclusion.reached by the M. & C, engineer was that for his own line
6 ft. diameter wh'eels would be: large enough for future construction. The
M. & C. were entitled to run over the S.J. section and lfor ,a
short space of time in 1870 sent No. 5 over the section.
In 1870 Neilson & Co. delivered a further batch of goods engines, intended
primarily for use on the former Scottish Central and Scottish North Eastern
sections. The design was mainly a. repeat of the one used for the ScottIsh
Central engmes of 1863, with the adoption of double frames and outside: bearings.
for ilie leading wheels. Also the flush-topped boiler was used. The engines
were of the 2-4-0 type with outside cylinders 17 in. diameter by 24 in. stroke,
coupled wheels 5 ft., 2 in. and leading wheels 3 ft. 2 in. diameter respectively.
The dome was placed in the middle of the boiler barrel and had Salter type
safety valves. The wheel centres were 6 ft. 2½ in. plus 8 ft. 9in.,
total 14 ft. 11½ in. The heating surfaces were: Tubes, 783.2
ft2..; firebox, 85.6 ft2.; total, 868.8
ft2.. Grate area, 15.0 ft2.. Working pressure, 120
lb. The weight per axle was: Leading axle, 10 tons 18 cwt. 2 qrs.; driving,
11 tons 18 cwt. 1 qr.; rear coupled, 11 tons 6 cwt.; total, 34 tons 2 cwt.
3 qrs. The tenders were standard four-wheeled type carrying 1,540 gallons
of water and 2½ tons of coal. Eight of these engines were allocated
to each section, those for the S.C. being renewals and those for the S.N.E.
being additions to capital account. These engines were never rebuilt, although
some of them in later years received good second-hand boilers with the
Rarnsbottom type safety valves over the firebox. The last survivors of the
class were generally to be found around Perth and Dundee, the exception being
1377, which was to be seen anywhere between Stranraer and Lockerbie.
No. | WN | Renumbered | Withdrawn |
372 | 1502 | 372A in 1891, 1283- in 1899, 1372 in 1900 | 1904 |
373 | 1503 | 373A in 1891 | 1893 |
374 | 1504 | 374A in 1891, 1284 in 1899, 1374 in 1900 | 1902 |
375 | 1505 | 375A in 1891, 1285 in 1899, 1I375 in 1900; 1544 in I904, 1375 in 1906 | 1908 |
376 | 1506 | 376A in 1891, 1286 in 1899 | 1899 |
377 | 1507 | 377A in 1891, 1287 in I899, 1377 in 1901 | 1911 |
378 | 1508 | 378A in 1891 | 1896 |
379 | 1509 | 379A in 1891 | 1898 |
544 | 1510 | 544A in 1892, 1288 in 1899, 1544 in 1900, 635 in 1902, 1375 in 1904, 1544 in 1905 | 1905 |
545 | 1511 | 545A in 1892 | 1894 |
546 | 1512 | 546A in 1892, 1289 in 1899 | 1900 |
547 | 1513 | 547A in 1892, 1290 in 1899, 1547 in 1900 | 1905 |
548 | 1514 | 548A in 1892, 1291 in 1899, 1548 in 1900 | 1905 |
549 | 1550 | 549A in 1892, 1292 in 1899,1549 in 1900 | 1901 |
550 | 1551 | 550A in 1892, 1293 in 1899. 1550 in 1900 | 1910 |
551 | 1552 | 551A in 1892, 1294 in 1899, 1551 in 1900, 639 in 1904, 1551 in 1904 | 1908 |
NOTE.-Nos. 544 and 551 got old close-coupled 0-6-0 engine boilers to wear out, hence the renumbering to 635 and 639 respectively. ( To be continued)
In tabulated list on page 143, for third engine read No. 15 built 1867, makers' number 71, and thereafter as printed.
L.M.S. 6252 "City of Leicester". 178. illustration
Caption: showing the latest development of the "6235" class as introduced
for series 6249 to 6252 completed during 1944.
Correspondence. 179
The North British Atlantics. W.B. Thompson.
Your interesting account of the origin of the North British Atlantic
engines illustrates once more the insularity of British railway. practice.
The fact that the directors would not allow a six-coupled passenger engllle
on the Waverley route may perhaps be excused on the ground that directors
are not generally engineers and cannot be expected to know much about.
contemporary locomotive work in other lands. But the attitude of W.P. Reid
seems inexplicable. You say (on page 157) that when he found himself obliged
to use an engine of the Atlantic type he contemplated building compounds
on the three-cylinder system introduced on to British railways by the North
Eastern engine 1619, but that the stakes were too high to trust the expresses
to experimental machines, and he accordingly decided to build simple engines.
At that date the French compound Atlantics were doing consistently brilliant
work; they had long been world-famous and there was nothing "experimental"
about them; and if in any other country an Atlantic compound had been required,
the French system 'would have been adopted as a matter of course. But there
is nothing in your article to show that Reid ever gave it a thought, or even
was aware of its existence.
In an earlier generation, F W. Webb rejected the Westinghouse brake because
he was not going to be taught his business by a Yankee, and we have suffered
from his folly ever since; the use of French compounds on the Waverley route
might have given a very beneficial stimulus to British loccmotive design.
Our Railway History-Part I .(Rixon Bucknall). W.
Beckerlegge.
In the review published on page 164 are two items calling for comment.
The G.W.R. Atlantic Quentin. Durward. was No. I79, dated April, 1905.
When first put into traffic it was named Magnet (see The Locomotive,
Vo!. 11, p. 73). About the end of 1906 it was decided to name all the Atlantics
after characters in Scott's novels, and 179 was accordingly renamed Quentin
Durward . In August, 1912, the engine was converted to 4-6-0 type and in
December, 1912, was renumbered 2979, but the name was retained and it is
understood that the engine is still in 'service (with this name).
With regard to L.N.W.R. Coronation, this engine left the erecting
shop as No. 1800. A photograph was reproduced in The Locomotive, Vol.
17, p. 119, showing the engine with this number, but without name plates.
When painted and named, the number-plates were altered to 5000 (the Crewe
number) and the engine never ran again as 1800 (although entered as such
in the Company's records) and retained the number 5000 till the L.M.S. renumbered
the engine 5348 in June, 1927.
[The rehabilitation of motive power]. R.S.
Guinness
I have read with much interest your leading article in the October
issue on page 147, and though doubtless those responsible for the commercial
and technical operation of the railways are giving careful thought to the
future, one sometimes wonders if they fully realise the advantages they have
at their disposal, such as unrestricted rights of way and none other than,
broadly speaking, self-imposed speed limits. Judging, however, from what
one sees and what one experiences, I cannot help thinking that the word "speed"
is by any means written to the extent it might be on the railway brow, and
that if the railways are to regain anything approaching their premier position
(under normal conditions) speed is the essence of the matter. As to·
how they are to achieve this is a matter for themselves, but I am particularly
glad to see your reference to the braking of goods stock, for the railways
have as yet devised no general means of enabling fast traffic to overtake
slow, without causing great delay to the latter and, in causing this, they
get to cross purposes with their freight customers, who, quite often, find
things so that they have to resort to other means of conveyance. Logically
the solution should be for all railway traffic to move at the same speed,
but if that is a practical impossibility, it surely could be made less so
by discarding relics of antiquity in the shape of the modern goods train.
Though not touched on in your article, it sometimes occurs to me that London
is looked on as a centre to perhaps too great an extent; that day and night
travel under comfortable conditions might be extended so as to enable other
centres to be better linked, and that synchronized departure times would
save the present generation from telephoning for information, when they find
the railway timetables, as they well may, something they cannot afford the
time to study the complexities of.
In conclusion, your query of more frequent running is "best perhaps answered
in that these Islands are not a Continent, so that the vast distances incidental
to the latter and the necessary conditions to meet them hardly apply.
British locomotive builders. S.H. Pearce
Higgins
Although the last locomotive built by Dick & Stevenson carried
the works number "1'00", the total output of the firm was probably exactly
half that number, as it was-in later years at least-the practice to allot
two numbers to each engine, and only the even number appeared on the plate.
This firm built three narrow-gauge locomotives for Spain; several locomotives
were sent to Singapore, and possibly one to Holland. Dick and Stevenson were
also numbered among the select, and long extinct generation of builders whose
works were never served by a siding to a railway; and when completed the
engines were driven under their own steam through the streets of Airdrie:
in earlier days the locomotives were taken to Hallcraig Station, but most
of the later engines were driven down the hill to a siding at Airdrie South
Station. I think it is unlikely that McKendrick & Ball built any locomotives:
this firm were at one time the London agents of A. Chaplin & Co., of
Glasgow, and no doubt several of Chaplins once familiar vertical-boiler engines
were supplied through these agents.
The claim of Lennox, Lange & Co. as builders of locomotives seems yet
to be proved. The firm is known to have obtained at least once locomotive
from Andrew Barclay, Sons & Co.; and although the earliest Snailbeach
District Railways locomotive Fernhill is attributed to Lennox, Lange &
Co., it would not be surprising to find that this 2 ft. 4¼ in. (or 2
ft. 4½ in.) gauge locomotive was only supplied by Lennox, Lange. The
Glasgow directories of the period show a City address for this firm, and
I have been unable to discover any reference to their yard or works.
[Bramah & Fox]. H.F. Hilton.
It is' recorded in "The History of the G.E.R. Locomotives" that one
of the engines of the Eastern Union Railway taken over by the Eastern Counties
Railway when the two lines were amalgamated was built by Bramah & Fox.
The name of this firm does not appear in the list of builders published in
"The Locomotive" for 1927, and I have been unable to trace it in other
publications. It would be interesting to have some further information about
the firm in question, and thus add to the completion of the list. .
The inventor of the steam superheater. H. F. Hilton.
180
.It has been stated that Timothy Hackworth invented the steam superheater
in 1839. In order to correct this statement and place the credit for the
idea with the rightful person, I would state on the authonty of Luke Herbert,
who was a patent agent and editor of The Journal of Patent Inventions
at that time, that "The last invention of Richard Trevithick, of Camborne
in Cornwall, was for improvements in the steam engine and in their application
to navigation and locomotion, for which he obtained a patent on 19 March
1833. The first of these improvements consisted in interposing between the
boiler and the worrking cylinder, in a situation to be strongly heated,.
a long pipe, formed of a compact series of curved plates, in which .the steam,
after it has left the boiler, passes with great velocity, and is further
expanded in volume before it enters the cylinder. And in order still further
tu augment this volume of steam, he placed the working cylinder within a
case constituting a part of the chimney, where the cylinder was kept hotter
than the steam employed in it, and by these means employed the otherwise
waste heat in augmenting the power of the engine." It is not recorded whether
this invention was ever applied to a boiler or engine. Timothy Hackworth
fitted a superheater to a locomotive constructed by Hawthorns in 1839.
Reviews. 180
British railways facts and figures:
Simplicity is the keynote of this official publication which contains
16 pages and has for simple and ready reference all the facts arranged
alphabetically. Three pages are devoted to a chronological table of outstanding
events dating from the opening of the first public railway in 1825. The story
of the Railways and London Transport, their work and progress, equipment
and achievements, both pre-war and during the past five years, is told factually
under 48 separate headings covering subjects as wide apart as railway bridges
and workmen's travel
One learns that 10,000 air attacks have been made on railway property; track
repairs are generally completed within 12 hours; shelter accommodation has
been provided for over 500,000 people, and 1,000 carriages have been con-
verted into ambulance and casualty evacuation trains. During the first evacuation
of London the railways ran 4,349 trains carrying 1,428,425 civilians to safer
areas, and 620 special trains were run in 16 days for 3I9,II6 troops evacuated
from Dunkirk.
Since the outbreak of war to the end of June last over 300,000 special trains
have been operated for the movement of troops and equipment, whilst in connection
with the North Aftica expedition over a period of a month 185,000 men, 20,000
vehicles and 220,000 tons of stores were carried to the ports in 440 troop
trains, 680 freight trains and 15,000 wagons attached to ordinary goods trains.
Paragraps are also included giving much useful information about railways,
docks, electrification and Government control, rolling stock, staff, stations,
and track, whilst for the serious student of railway affairs a ten-page folder
giving a summary of the latest available financial and other statistics in
handy form is appended. These statistics tell their own story and reveal
the magnitude of the war-time task the railways have had to perform, and
the efficiency and economy with which it has been accomplished. A glossary
of railway terms is also included, together with a diagrammatic illustration
of railway operating statistics for 1943 compared with pre-war.
The story of the .West Highland. George
Dow.
In this all-embracing history of one of .the most interesting lines
of the British Isles the author has lived up to the high standard which he
set in his previous book, recently reviewed in this column. The first of
the four chapters relates to an historical survey and amongst other matters
refers to the skirmishes which the North British had with the Highland and
Caledonian railways, together with the history of the unlucky Invergarry
& Fort Augustus Railway. The second chapter deals with engineering features,
of which it can certainly be said that the line had its fair share; possibly
the best known of these is the snowshed north of Rannoch, but a number of
the bridges, and especially the Glenfinnan Viaduct, are of considerable interest.
Next the subject of locomotives receives detailed attention, full particulars
being given of all the various types .which have worked over the line dunng
the fifty years It has been open.. Finally, train services and other features
are dealt with. An outstanding feature of this publication is its illustrations,
they are copious and good; in fact, although it is a minor criticism, one
cannot help thinking that in some cases they are unnecessarily complete.
There are four appendices consisting of elevations and plan of the typical
station buildings, a gradient profile, a sectional view of a coach and the
principal dimensions of locomotives. This excellent book will be valued by
the many who have traversed the railway and will attract many who have not
yet travelled the metals to what is one of the great scenic lines of
Scotland.
Our railway history. Part II. R. Bucknall. 48
pages 8vo.,
This is the .second of three parts in which the author plans to epitomise
the history of the railways of Great Britain. It deals with the Great Eastern,
L. & Y., Great. Central, L.S.W., L.B, & S.C. and South Eastern &
Chatham railways, Excellent illustrations add to the interest.
L.N.E..R.
The medal of the London & North Eastern Railway has' been presented
by Sir Ronald 'Matthews to Driver Gimbert, G.C., and the mother of the late
Fireman Nightall, G.C for gallantry in saving from complete destruction a
burning ammunition train.
Newcomen Society. 180
At a meeting held on 18 October
a paper was presented, Stephenson Locomotives for the St. Etienne & Lyon
Railway, by E. A. Forward, M.I.Mech.E,
Institute of Transport. 180
On 3 November a luncheon was held in London to commemorate the
twenty-fifth anniversary of the founding of the Institute. The President,
Robert Kelso, was supported by Sir William Wood, Vice-President of the L.M,S.,
Herbert Morrison, the Home Secretary, and Lord Woolton, as well as many other
distinguished visitors. Mr. Morrison, in proposing the continued success
of the Institute, congratulated the members on its work, and while keeping
clear of controversial aspects, emphasised that transport was a basic industry
and that it was essential to the country's welfare that all forms of it should
work together in a "streamlined" fashion. In celebration of this anniversary
the Institute of Transport has issued in pamphlet form a paper prepared by
D. R. Lamb, one of its members, reciting the beginning and achievements of
this latter-day scientific society. The record bears witness to the power
of the technical Press, not only in arousing interest in a worthwhile object,
but also in setting it in motion, for the author explains how the Institute
owes its origin to the enterprise of Modern Transport in successfully
soliciting the support of the leaders of the industry towards the founding
of a society which to-day enjoys Royal Patronage.
New Zealand Govt. Rlys. 180
The conversion of the class A 4-6-2 four-cylinder compounds to
two-cylinder simples was proceeding. Of the 57 engines built between 1906
and '1914 over 30 had been converted since 1941.
Southern Railway. 180
A. Cobb, the Locomotive Running Superintendent, had retired, and as
from 1 November T,E. Chrimes had been appointed Superintendent of Motive
Power attached to the Office of the Superintendent of Operation.
Number 628 (15 December 1944)
The British 4-6-0. 181-2
Broad survey: partly history (Highland Raiway Jones Goods to GWR
Kings..
4-8-2 Mountain type locomotive Canadian National Rlys. 182. illustration.
Built by Montreal Locomotive Works: first of batch of 20: No. 6060.
Inspected by E.R. Battley, Chief of Motive Power; W.N. Townsend. Works Manager
of Montreal Locomotive Works, Francis Williams, Chief Mechanical Engineer
and R.F. Walker mechanical engineer (locomotoves)
Dynamometer car Victorian & S. Australian Rlys. 183-4. 2 illustrations,
diagram (elevation & plan).;
Fitted with Amsler equipment and constructed at the Islington workshops
of the South Australian Railways in 1932. Illustrations include view of
instrument table.
F.C. Hambleton. G.W.R. saddle tank engines Class 1661. 185. 2
illustrations
Drawings of Nos. 1695 with saddle tank and and 1685 as pannier tank.
Withdrawn locomotives were sold to the Cardiff Railway, Alexandra Docks Cp.
and to the Brecon & Merthyr Railway. See below
L.N.E.R. 185.
Over £3,000,000 was to be spent by the L.N.E.R. on the construction
of 10237 new wagons for 1945. Four thousand of the new vehicles will be 16-ton
end-door mineral wagons, and 3000 13-ton open goods wagons. Included in the
remainder will be 1750 hopper wagons for mineral traffic, 200 13-ton single
bolster and 100 21-ton double bolster wagons, mainly for iron and steel products;
500 covered vans of 12 tons capacity, 100 10-ton air insulated fish vans;
30 machine wagons of 20 tons and 25 tons capacities, and 100 20-ton brake
vans
Londonderry & Lough Swilly Ry. 185.
4-6-2T No. 12 had been scrapped leaving only 10 locomotives in stock.
Passenger services still ran between Derry and Buncrana and freight ran to
Gweedore.
L.M.S.R. 185.
The fifty American 2-8-0s and the fifty British-built 2-10-0s which
were on loan to this company during the summer have now been returned to
the Government for service overseas. The output of standard Class 5 passenger
and Class 8 freight engines continues. Of the 5P 4-6-0 type Nos. 4800 to
4814 and 4826 to 4845 are in service, while the 8F 2-8-0 engines are out
up to No. 8374 (built by the L.M.S.), while the G.W. have built 8400 to 8459,
all in service on that line) and the L.N.E.R. have built 8500 to 8524 (all
working on the L.N.E.R.).
Unintentional parting of trains. 186
It is not possible accurately to assess the cost to the railway of
an unintentionally divided train. Apart from the actual costs of replacing
the defective drawgear and any other consequent damage to stock, way and
works which may accrue, and the settlement of claims by consignors for goods
damaged or delayed in transit, overtime may be incurred by the train news
and other operating staff, and the line capacity of the section concerned
temporarily reduced. In any event such train partings are of considerable
nuisance value, and practical considerations alone demand their minimisation.
Assuming good workmanship and satisfactory material for the drawgear in the
first instance, and given good design, the possible causes of drawgear fractures
are in the main of a cumulative nature. They are:
(a) Unsatisfactory standard of shunting in that shunting movements are badly
con- trolled and result in unnecessarily abrupt starts and stops, or snatching
at couplings during movement.
(b) Unsatisfactory standard of driving as regards control of the regulator
and brake; this may be aggravated by the consistent giving of shunting signals
on the side away from the driver and / or inefficient transmission of
instructions by the fireman. These two causes, it will be observed,. can
only be eliminated by careful attention to the systematic training of staff
and subsequent supervision of their work.
(c) Fatigue or excessive wear of drawgear. If many cases of partings are
attributable to reasons in these categories, it is obvious that the standard
of rolling stock maintenance must be raised. Limits of maximum wear must
be specified and, when these are reached, either by length of service or
exposure to atmospheric conditions, the drawgear must be brought back to
drawing dimensions by makmg up with welding or other means. Fatigue brittleness,
a frequent cause of mechanical failure, can be counteracted by periodic
normalisation, and it is felt that the more general adoption of this practice
in future will be advantageous. It is equally as important that drawgear
springs be regularly and thoroughly examined, scragged and retempered as
necessary, this examination being extended to all nuts, taper pins and cotters
used for their retention.
Great Southern Rys. Ireland. 186
No. 463 4-6-0T (formerly No. 11, Cork, Bandon & South Coast Ry.)
has been fitted with an R class Belpaire boiler. .
G.W.R. 186
Further standard 0-6-0 goods engines were appearing from Swindon,
numbered 2231 onwards. Some of the 2:8-0 Austerity engines only recently
transferred to this line from other companies have been handed back to the
Government.
P.C. Dewhurst. Midland Railway locomotives: Birmingham & Derby
Junction Railway. 186-8.
Continued from page 155. The next locomotives were two 0-4-2 goods
engines supplied by the firm of Thompson & Cole, their names being Kingsbury
and Willington; no maker's numbers are known of this firm, whose out- put
of locomotives appears unknown except for the engines they supplied to this
railway and the North Midland. The firm is believed to have been located
at Carlisle, and it is also probable that the first- named partner- Thompson-was
the Thompson who afterwards became one of the members of Messrs. Kitson,
Thompson & Hewitson when the Airedale firm was re-formed with that title
in 1842. This fits in well with the supposition that Thompson & Cole
ceased business as locomotive-builders in 1841-although an alternative version
is that the Fig. 6 Mr. Isaac Thompson of Kitson & Co. had previously
been an iron merchant of Northallerton; possibly the two accounts are
complementary. The delivery of these engines must have been between the
Secretary's letter of June, 1840, and the Return of October, 1841, and probably
early in 1841. The apparently very SImilar goods engines built by the same
firm for the North Midland were delivered July-September, 1840, hence it
is likely these B. & D. engines were delivered between September, 1840,
and September, 1841, and as a minute of the latter date reading "to consider
providing two additional goods engines" , suggests that some time had elapsed,
the deliveries were probably nearer the former than the latter date.
In the Secretary's letter of June, 1840, already referred to, which gives
the upper limit for the delivery of these engines, it is stated "your list
includes an engine named Wellington. We have no engine so named".
At first sight this might indicate there was already a B. & D. engine
named Willington mistakenly written Wellington by the London
& Birm.; if this had been the case, however, it seems obvious that the
B. & D. Secretary would have pointed it out as an error and given the
true name. . Although no drawings, and only a few dirnensions are directly
traceable, the probable form of these Thompson & Cole engines can be
derived from the following considerations: The October, 1841, Returns give
the type 0-4-2 and state that they had inside and outside beanngs, and hence
had main frames outside the wheels, i.e., double- framed; the diameter of
driving wheels 5 ft. 0 in. ; and the weight in working order, 15.5 tons.
As the only engines with 5 ft. 0 in. wheels in the MId. Rly. Gauge Returns
of 1845 have 14 by 18 in. cylinders and further the engines appear with 14
by 18 in. cylinders in the Mid. Rly. list of 1849, also the average weight
of the twelve Birmingham & Derby singles (which had 12 by 18 in. cylinders
according to Whishaw) being given in the 1841 Returns as 13.9 tons, it is
clear the goods locomotives were much larger engines. Regarding their general
features: as Robert Stephenson had considerable influence on the Birrningham
& Derby line from about 1840, and as Thompson & Cole also built three
0-4-2 double-framed goods engines with 5 ft. 0 in. wheels and 14 by 18 in.
cylinders for the North Midland during 1840, for the purchase of North Midland
locomotives Robert Stephenson being at that time responsible, there can be
little doubt but that the B. & D. goods engines followed closely the
pattern of 0-4-2 engines put upon the N. Midland by R. S. & Co., Thompson
& Cole, and other firms. These latter engines will be fully dealt with
later on in that section of the history. As, however, there is fortunately
extant a R. Stephenson & Co.'s drawing as supplied to those firms which
built engines to what were practically sub-contracts of Stephenson's, a
precis-outline is given here as Fig. 6 and probably represents these engines
very closely. Apart from the actual dimensions of these engines already given
it may be added that the heating surface would have been about 550 sq. ft.
in the tubes, plus 56 sq. ft. in the firebox, a grate area about 11 sq. ft.
and a wheelbase 11 ft. to 11 ft. 6 in. Whether the boilers had domed or "Gothic"
firebox shells is not definitely known, although as practically all locomotives
constructed under the auspices of Stephenson's in 1840-4 had the latter,
these B. & D. examples probably followed the practice.
The Mid. Rly. numbers of these two engines when first placed upon the Amalgamated
Stock list are not certain; they may at first have been numbered between
77 and 85, but in any event they were Nos. 298 and 299 in 1849, the former
of these being solda 14 in. cylinder coupled engine ten years old at
that time had considerable secondary usefulnessin April, 1851, whilst
the latter, after being renumbered 307 in June, 1852, was sold in November
of that year.
It has been supposed that there was a third goods engine, thus making the
total "amalgamated stock" contributed to the M.R. 15 locomotives, but although
there is room for such an engine amongst the 13 such goods in the 1845 Return,
.the extra one is possibly a North MIdland engine. That there was some intention
to obtain more goods engines is evident from a B. & D. minute of September,
1841, "to consider providing two additional goods engines for the opening
of the New Line" (i.e., the direct line from Whitacre to Birmingham). This
proposal is clearly additional to the two goods engines which appear in the
October, 1841, Returns, but as a minute of October, 1841, refuses a tender
from Braithwaite Milner & Co. to supply locomotives and another minute
of November, 1841, declines an offer of a. locomotive with the remark "that
the Company are not at present purchasing engines", it would seem the proposal
lapsed. No minutes are available for the subsequent period until 1843, so
it is not possible to prove the negative, but as no reference has been traced
of such engine subsequently upon the Mid. Rly., the fifteenth locomotive
upon the B. & D. must remain "not proven". No information is known as
to the colour of the locomotives of the B. & D. Railway, and sparseness
of records prevents any fuller reference to the characteristic features of
the carriages and wagons, although of the carriages, which were of first,
second and third class and stated at the time to be "very similar to the
London & Birmingham carriages.' ,
Regarding the locomotive depots and workshops, it has already been mentioned
that there were sheds at Hampton (now used as a timber and corn mill) and
the fact that Mr. Kirtley was stationed there indicates that they formed
the principal depot. There was also a locomotive running-shed at Derby from
the beginning; it consisted of a straight shed 143 ft. long by 43 ft. wide,
having three lines for the engines, a blacksmith's shop, offices, etc., and
was at the southerly end of the area occupied by the works and yard of the
North Midland and Midland Counties under what came to be called the tri-partite
arrangement, being towards what is now known as the London Road Bridge. When
the extension line to Birmingham (Lawley Street Station) was built, running-sheds
were established at Saltley, from when, or at some time between then and
the amalgamation, the Hampton shed would appear to have been closed, because
by June, 1844, only two active locomotive depots are recorded, Derby and
Birmingham, and the latter must have been represented by Saltley.
There were no tunnels; the principal bridges and viaducts consisting of a
very fine viaduct over the River Anker just south of Tamworth having 19 stone
arches in all some 700 ft. long, the Wichnor Viaduct between Burton and Tamworth
over the confluence. of the rivers Tame and Trent, some 1,.300 ft. long,
originally constructed of timberand which lasted until 1879and
a smaller viaduct, also originally of timber, over a tributary of the River
Dove south of Repton. The ruling gradient was 1 in 339.
From the earliest timetable knownof October, 1839it is seen that
there were four passenger trains each way on weekdays and two on Sundays,
one each of the weekday trains making intermediate stops at Burton, Tamworth
and Hampton only; whilst by July, 1840, the service comprised five passenger
trains each way per dayand three each way on Sundaysincreased
to six and four respectively by November, 1840 mostly takmg 1 hour
40 minutes to two hours between Derby and Hampton (one train 1 hour 30 minutes)
giving average speeds from 19 to 26 m.p.h. including stops, whilst between
Hampton & Bummghamno doubt including a wait. at Hampton in some
cases a minimum and maximum of 20 and 35 mmutes was allowed. Whishaw
gives the average speed as 23 m.p.h. at this period. It may be. noted that
there was no station at Whitacre at this time. Later when both the use of
the route as a London traffic link had ceased, as also the direct line from
Whitacre to Birmingham had eliminated even the Birmingham traffic from the
Hampton line, the service in 1851 was still five passenger trams, but by
1852 the service between Whitacre and Hampton was reduced to four passenger
and one goods train per day (no trains on Sundays) and in that year trains
took 1 hour 55 minutes between Derby and Hampton and two hours between Derby
and Birmingham direct, except one or two w.hlch did each run in 1 hour 45
minutes. All trainspassenger and goodsthen took 30 minutes for
the 7¼ miles from Whitacre Junction to Hampton, but only 15 to 20 minutes
in the reverse direction.
One of the earliest railway journeys of Queen Victoria included the Birmingham
& Derby line as a link in a round trip from London via Hampton to Tamworth
and on via Derby to Chesterfield, then from Chesterfield via Derby to Nottingham,
and, finally, after travelling from Nottingham to Leicester byroad-for what
reason the road was chosen is not now knownfrom Leicester via Rugby
to London. It will be observed that four distinct railways were travelled
over and that both of the one-time rival "London and the North" routes, viz.,
via Tamworth and via Ullesthorp, were patronized. This journey took place
at the end of November, 1843, and the B. & D. engine used was Tayleur's
Burton (not Barton, as erroneously stated by "Veritas Vincit",
but corrected by him later) as is duly chronicled in the Press of the time,
which also states that the directors of the Derby line travelled with the
train, which was "under the guidance of Keightley, the Resident Engineer
of the Line" and that the run from Hampton to Tamworth15 milesas
made in 20 minutes. The reference to Mr. Keightly (sic) supports the view
expressed at the beginning of this account that Mr. Kirtley was also Resident
Engineer during the later life of the B. & D. During its separate existence
the B. & D.contrary to at least one of its later partnersappears
to have led a fairly blameless life in respect to accidents; there being,
it is believed, only one case "recorded against it" ,. this being a "collision
with a truck on the line" on 2 December 1840, when one person was killed.
The shadow of impending amalgamation appears definitely in a minute recording
the appointment of a "Joint Committee" composed of North Midland, Midland
Counties and Birmingham & Derby members from September, 1843, amongst
the early actions of which was to recommend' to the Midland Counties and
North Midland "to provide two powerful Locomotive Engines, viz., one by each
Company", to which both the before-mentioned companies retorted they considered
"two engines each instead of one be ordered." The last minute dealing with
locomotive matters ends on a typical key of improvement of constructional
details whereby, in view of a driver having been injured by falling from
an engine in motion, Mr. Kirtley was instructed "to narrow the space between
the Tenders and the Engines" an improvement to which full effect was
not given by locomotive designers for very many years.
H. Fayle The Dublin & South Eastern Railway and
its locomotives. 188-90. 3 illustrations
Continued from page 127. With this somewhat brief
resume of the history of the company, the locomotive stock will now claim
attention. The company took over with the Dublin & Kingstown Railway
in 1856 that company's locomotive works at Grand Canal Street, Dublin, just
outside Westland Row station, and these premises, with a few minor extensions,
served in this capacity throughout its entire existence. The works, which
had originally been a distillery, were very inadequate, but, nevertheless,
a considerable number of locomotives were built there. starting with the
Princess of the Dublin & Kingstown Railway in 1841,. the first
engine built in Ireland. Plans had been made about 1905 for transferring
the works to Rathnew, but never came to fruition owing to the financial state
of the company.
In stating that engines were built at Grand Canal Street, some qualification
is necessary; the cylinders were sometimes cast on the premises, but the
boilers and mountings came complete from some English firm, and this sometimes
applied to the cylinders too. So cramped was the accommodation that engines
under repair remained partly out in the open, and construction was an extremely
slow business. Still, when all these drawbacks were allowed for, the quality
of the work turned out was very creditable, more particularly of latter years.
Some good coaching stock was also built on the premises that was quite up
to the standards of that time. The old stock running on the local trains
was, however, none too creditable, being all six-wheeled or four-wheeled
up to about 1905, the third class being innocent of upholstery. Itis worth
noting that second class accommodation predominated in the local trains,
and the company had more coaches of this class than any other in the early
years of the present century, Eventually, however, in 1921, second class
accommodation was discontinued throughout the system.
For the opening of the line five engines were obtained from Wm. Fairbairn
& Son, and two others were temporarily hired from Wm. Dargan, the contractor.
Regarding the latter, nothing is known of their type, but one of them, named
William Dargan, was afterwards used on the construction of the line
to Wexford. Nos. 1 and 2 were single well tanks, which are said to have had
13 in. by 20 in. cylinders, and 5 ft. 6 in. driving wheels; very little is
known about them, but No. 1 was working on the Wexford & Rosslare Railway
when the D.W. & W. Railway were operating that line between 1882 and
1889; it may have lasted to 1892, when a new engine bearing this number was
built. No. 2 was renumbered 45 in 1885 and adapted for use as a stationary
engine to work the machinery at Grand Canal Street works, being finally scrapped
in 1901.
No. 3 was a 2-4-0 tender engine with cylinders 15 in. by 22 in. and 5 ft.
0 in. coupled wheels; it appears to have been very similar to some engines
supplied by Fairbairn at the same time to the Waterford & Limerick Railway,
and may have been one of the same batch. This engine received a new boiler
in 1879, and was rebuilt as a side tank locomotive in 1884; in this state
lit somewhat resembled the later side tanks built at Grand Canal Street,
but the cab was open at the back; as in the case of other Grand Canal Street
rebuilds, the plate carried the date of the boiler (1879) but not that of
the actual rebuild; it was scrapped in 1898.
The two remaining engines, 4 and 5, were 2-2-2 well tanks of a larger type
than Nos. 1 and 2; the cylinders were 15 in. by 20 in., wheels 3 ft. 6 in.,
5 ft. 6 in. and 3 ft. 6 in. respectively, boiler 9 ft. lit in. by 4 ft. 0
in. (inside), firebox 4 ft. 6t in. by 4 ft. 0 in. (outside), tubes 2 in.
by 10 ft. 4 in. long, heating surface 635.35+73.35= 709 sq. ft.; weights:
7.5 tons + 13.0 tons+7.5 tons = 28.0 tons in working order. All these five
engines were probably supplied in 1853. No. 4 blew up on September 16, 1872,
when standing at Bray station, the engine being a total wreck. No. 5 was
rebuilt in 1870, and made more powerful by decreasing the size of the driving
wheels to 5 ft. 3 in. ; in 1882 it was further rebuilt with all-over cab
and bell-mouthed dome on the first boiler ring; this type of dome was fitted
to many Grand Canal Street rebuilds of this period; the engine became No.
5A in 1897 and was scrapped in 1900. It would appear that all these early
engines bore names, only one of which is known, the Avoca, which worked
a special train to Bray WIth the directors on 25 March 1854.
In 1854 the Vulcan Foundry supplied two single saddle tanks (Nos. 392/3)
which became Nos. 6 and 7; the cylinders were 13 in. by 20 in.; wheels, 3ft.
6¼ in. 5 ft. 3¼ in. and 3 ft. 6¼ in. respectively; wheelbase,
12 ft. 9 in. equally divided; boiler, 10 ft. 0 in. by 3 ft.
01/8 in. (small end); height of centre line, 5 ft.
105/8 in.; firebox, 4 ft. 0 in. by 3 ft. 11 in.; 158 tubes
of 17/8 in.; heating surface, 712.6+ 64.0=776.6 sq. ft.; grate
area, 12.25 sq. ft. ; tanks, 450 gallons. The eng:ines were domeless and
had two 4 in. safety valves; they were fitted with Dodd's wedge valve motion.
As the water in the shallow saddle tanks was liable to get over-heated, these
were replaced by well tanks under the footplate, and, probably to preserve
the weight distribution, shallow trough tanks were also fitted along the
frames. These trough tanks were almost a D.W. & W. Railway speciality,
and cabs and the usual bell-mouthed domes were also added. No. 6 was rebuilt
in 1877, and became 6A in 1894; it continued to work till 1903, when it was
hired to the contractor of the new railway then building between Waterford
and Rosslare, and was probably broken up soon after. No. 7 became 7A in 1895,
and was scrapped in 1902; in both cases the cylinder diameter had been increased
to 14 in. when the engines were rebuilt; despite their small size, this type
had done good work on the light trains then in vogue on the level portion
of the line between Dublin and Kingstown, and lasted nearly fifty
years.
L. & N.E.R. 190
It was reported that one of the Ivatt 4-4-0 engines, No. 4075, had
been allocated to Directors' use, and had been renumbered 2000 and repainted
in the standard L.N.E. green Iivery with polished brasswork. In consequence
the N.E. Area 0-6-0 formerly No. 2000 had been renumbered 2050. Engines built
at Darlington so far this year in order of works numbers (1923 to 1944) are:
3691, 8500, 3692, 8306/7/8, 3693/6, 8309, 8501, 3697, 8310, 3694/5. 8502
to 8508 and 3698 . Nos. 3691 to 3695 were Class V2, 3696 to 3698 were A2/1,
8306 to 8310 were B1 (Antelopes) and 8500 to 8508 were L.M.S. 8F 2-8-0s on
loan to the L.N.E.R.
Lightweight passenger stock . 190-1.
Save for the advent of the war, lightweight passenger stock would
by now be a familiar feature upon the railways of this country and the Colonies.
For some years considerable developments took place, and the weight had been
greatly reduced by scientific design coupled wIth the use of metals which
the continuous progress in that field had made available. How considerable
these developments had been may be realised by comparing the 1,600 lb. weight
per passenger seat of the orthodox third-class coach with that of some stock
placed in service by the L.M.S.R. shortly before the conflict commenced,
where the equivalent weight was reduced to 500 lb. Obviously this reduction
was not achieved over- night; it represented, in fact, some seven years'
progress.
The advantages of weight reduction appear to have been appreciated far
earlierif not betterin the road transport sphere, where, many
years ago, it was realised that the chief constituents of what is understood
by performance, viz., acceleration, maximum speed and fuel consumption, were
dependent upon the ratio of power to weight. Light weight also greatly lessened
wear and tear of both vehicle and road. All these findings apply with equal
emphasis to the weight reduction of rolling stock with certain added advantages;
e.g., existing types of locomotives are capable of working longer trains
to existing schedules, or, alternatively, trains of orthodox seating capacity
to schedules calling for higher rates of acceleration and greater maximum
speeds than those in force with existing stock. It is of interest to note
that experience in America has shown that for high-speed operation a satisfactory
weight/power ratio is 450 lb. per horsepower (including the weight of the
locomotive).
The war has been responsible for prodigious developments in the technique
of manufacturing and utilising lightweight alloys and stainless and high-tensile
steels, so that to-day it is no exaggeration to state that in such products
this country may claim to lead the world. Such alloys are naturally higher
priced, but the additional capital cost is justifiable from the economic
aspect. alone, for weight reduction pays a continuous dividend m the form
of lower fuel and maintenance costs. A point frequently overlooked with the
aluminium alloys is that a considerable saving is effected in the working,
and a further saving results in the paint-shop, for, generally speaking,
less preparatory work is necessary in obtaining a suitable surface, with
the added advantage that rusting troubles are unknown. Still further advantages
accrue from the point of view of finishing by the use of stainless steel,
which may be left in its natural condition; the results thus obtainable are
very satisfactory, both from the point of view of attractiveness and ease
of deaning.
Problems arise in connection with the braking of such trains, for although
the train, being lighter, requires less retardation in itself, the fact remains
that normally the locomotive does not do its fair share of the braking, and,
as a corollary, the train has to do more than its fair proportion viewed
on a weight basis. The solution is a simple one and consists of much higher
braking ratio, m some cases as much as 250 per: cent. may be called for,
and fitting of decelakrons becomes necessary.
It is impossible to touch upon more than a tithe of the considerations involved
in design in an article of this length, nor, for that matter, is it necessary;
our pages in recent years have contained much information upon the subject,
together with particulars of experience obtained elsewhere. What is necessary
at thrs Juncture, is the formation of a clear-cut policy on the construction
of light-weight passenger stock and, equally Important,. a definition of
the spheres where Its operation will prove of the utmost benefit to railways
and public alike. The sphere of operation will affect the root of the whole
matter, for any weight-saving is largely dependent upon design and to derive
the maximum benefits such coaches must be operated only in conjunction with
other lightweight stock. Should it be decided to utilise hght stock with
heavy, the design of the former must allow for the increased buffing and
draw stresses and the maximum savings cannot result.
Stirling Everard. Cowlairs commentary . 191-2. illustration
(drawing)
Continued from page 157. The Atlantics were put into service with
appropriate publicity, and they were all given names suitable to Scottish
engines. Their numbers were 868-881. In comparison with the "317" class they
were enormous, and possibly for this reason there was an initial prejudice
against them .. After a few months of service all were temporanly withdrawn
and one was sent to the North Eastern for dyriamometer trials, but the trials
proved so satisfactory that the engines were all returned unaltered.
The Cowlairs authorities still hankered after a 4-6-0 design, and a comparative
trial was arranged between an Atlantic and a locomotive of the London &
North Western Experiment class, taking place on the English company's line:
Nevertheless the ban on six-coupled express engmes was not raised, and in
1911 six further Atlantics were ordered from Robert Stephenson & Co.
These engines, Nos. 901-906, varied from the original machines slightly in
detail..
Reid had no intention of abandoning, except ill this one case, accepted North
British practice. Only in the case of the Atlantics did he stray far from
the beaten track. In 1906, for example, he introduced a typically Cowlairs
6ft. 4-4-0 with 19in. x 26in. cylinders, officially named the 19in. Intermediate
Goods" class. Twelve were built, Nos. 882~893, which were, despite their
classification, used almost entirely on passenger duties. They were followed
in 1909 and 1910 by a further twelve. These were numbered 331-333, 382-385,
864-867 and 894. In common with all Reid's main line passenger engines, this
class had piston valves.
In 1909 and 1911 sixteen 6 ft. 6in. 4-4-0 express engines on the same general
lines were built, and since they would come more under the eye of the public
it was decided to name them after characters in Sir Walter Scott's novels,
one, No. 898, being named after the author himself. The engines of this,
the first "Scott" class, were numbered 243-245, 338-340, 359-362 and 895-900.
When the Intermediates were introduced an 18½in. 0-6-0 goods class was
also put in hand to take over from the 18in. Holmes engines the heaviest
main line traffic. The design followed conventional North British practice.
Seventy-six in all were built, Nos. 848-857 coming from the North British
Locomotive Company in 1906 and 197-208 and 364-381 from the same firm in
1909 and 1910. The remainder of the class were built at Cowlairs between
1906 and 1913, and were numbered 38, 56-59, 86, 115, 120, 124, 126, 127,
129, 185-196, 220, 226, 228, 253, 254, 329, 330, 335-337, 347 and 348. The
first to appear were the Cowlairs engines Nos. 329 and 330 which were the
first goods engines owned by the North British to be fitted with piston valves.
There was nearly a year's delay in their completion from the time they were
laid down, the frames lying unused in the boiler shop for most of this time.
All the Reid classes so far described had relatively large boilers, high
pitched, and, therefore safety valves mounted above the firebox. Reid, however,
had not so far departed from the old practice of placing them on the dome
from any reason of policy. His tank engines built in 1909 had the safety
valves on the dome.
The two tank classes brought out in that year were based on the types which
had originally been introduced by Drummond. For passenger service he ordered
from the North British Locomotive Company twelve large 0-4-4 with the 5ft.
9in. coupled wheels which Cowlairs had standardised for that wheel arrangement,
but with 18in x 26in. cylinders.
It had been decided in 1909 to abandon once again rope haulage on the Cowlairs
bank, and Reid, therefore, decided to introduce a powerful class of six coupled
tank for banking service. Such engines, however, would be equally useful
for short distance goods traffic. He took the " Terrier" as the basis of
an 18in. design of 0-6-2 wheel arrangement with 4ft. 6in. coupled wheels,
the trailing axle being added to allow of a larger coal bunker. This class
with modifica- tions from time to time was built from 1909 to 1924, thirty
examples being put into service after the North British had been merged into
the L.N.E.R. The boilers of this class were interchangeable with those of
the 0-4-4 tanks.
The 0-6-2 engines were for the most part built on contract, Nos. 7, 20, 22,
29, 47, 49, 54, 61, 65, 69, 70, 96, 97, 106-108, 142, 154, 165, 166, 209,
210, 219, 223, 224, 229, 230, 240, 246, 251, 252, 257, 259, 264, 276, 282,
386-393, 369-399, 453 and 858-863 coming from the North British Locomotive
Company between 1909 and 1920. Nos. 519-528 were built by R. Stephenson &
Co. in 1923, and the N.B. Loco. Co. built Nos. 907-926 in 1912. After the
grouping twenty were built at Cowlairs, Nos. 9019, 9023, 9031, 9052, 9055,
9060, 9067, 9071, 9074-9079, 9099, 9125, 9147, 9174, 9225, 9227. The greater
number of these carried North British numbers when put into service, with
or without the suffix " B," being delivered before the introduction of the
scheme by which the North British numbers were increased by nine thousand.
The 0-4-4 tanks did not prove to be the last word for suburban traction,
so in 1911 Reid introduced a 4-4-2 tank design for these duties. These loco-
motives were similar in power to the front coupled tanks, having 5ft. 9in.
coupled wheels, 18in. x 26in. cylinders and standard boilers with safety
valves over the firebox, as in the case of the later 0-6-2 engines. They
were the lineal descendants of Drummond's 4-4-0 express tanks for the Helensburgh
route. Thirty in all were built between 1911 and 1913 by the Yorkshire Engine
Company, their numbers being 1-6, 12, 15, 16, 25, 26, 39, 41, 43, 48, 51,
53, 64, 102, 122, 131, 133-135, 141, 155, 164, 265, 267 and 309.
About this time a further trial of a 4-6-0 passenger engine took place, the
North British borrowing a Castle class engine from the Highland, and running
it between Edinburgh and Perth. For comparison an "Intermediate" 4-4-0 was
used on similar duties. This experiment resulted in no change of North British
policy, and in fact the 4-6-0 did not appear on N.B.R. routes, even in L.N.E.R.
times, until long after the type had become commonplace on every other main
line in Britain. (To be continued)
H.F. Hilton. Gurney's Locomotive on the Hirwain Railway. 192-4. 2
diagrams
From time to time methods of locomotion designed for roads have been
adopted on railways, and one of the earliest instances occurred on the Hirwain
Railway in South Wales in 1830.
Goldsworthy Gurney had introduced steam carriages on the streets in London
and on the road between Gloucester and Cheltenham about the same time as
Hancock, an engineer, of Stratford-le-Bow, Essex, was running several steam
vehicles of different types in and about the Metropolis. In spite of the
rough roads and other difficulties, he had established the adaptability of
this form of locomotion, and it would appear that Gurney, in an attempt to
gain equal success, had intruded on the 'ingenuity of Hancock and put forward
fictitious claims for his ideas. He forwarded his own interests by every
possible means and obtained the patronage of influential persons.
Wilham Crawshay, a prominent ironmaster, of Cyfarthfa Castle, near Aberdare,
laid down a railway on Hirwain Common far the conveyance of ironstone and
coal to his furnace, a distance of 2! miles, and early in 1830 induced Gurney
to sell him one of his London-built road engines. Hebert, an engineer, in
one of his books states the engine was hauled by horses to South Wales,
P.C.D. Commentary on the "White Horse of Kent". 194-6